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ABSTRACT:

Crack detection for bridge bottom surfaces via remote sensing techniques is undergoing a revolution in the last few years. For such
applications, a large amount of images, acquired with high-resolution industrial cameras close to the bottom surfaces with some mobile
platform, are required to be stitched into a wide-view single composite image. The conventional idea of stitching a panorama with
the affine model or the homographic model always suffers a series of serious problems due to poor texture and out-of-focus blurring
introduced by depth of field. In this paper, we present a novel method to seamlessly stitch these images aided by 3D structure lines of
bridge bottom surfaces, which are extracted from 3D camera data. First, we propose to initially align each image in geometry based
on its rough position and orientation acquired with both a laser range finder (LRF) and a high-precision incremental encoder, and these
images are divided into several groups with the rough position and orientation data. Secondly, the 3D structure lines of bridge bottom
surfaces are extracted from the 3D cloud points acquired with 3D cameras, which impose additional strong constraints on geometrical
alignment of structure lines in adjacent images to perform a position and orientation optimization in each group to increase the local
consistency. Thirdly, a homographic refinement between groups is applied to increase the global consistency. Finally, we apply a
multi-band blending algorithm to generate a large-view single composite image as seamlessly as possible, which greatly eliminates
both the luminance differences and the color deviations between images and further conceals image parallax. Experimental results on
a set of representative images acquired from real bridge bottom surfaces illustrate the superiority of our proposed approaches.

1. INTRODUCTION

1.1 Intended Applications

Concrete is the most widely used man-made material for con-
structed systems. Cracks are the main disease appearing on the
structured concrete surfaces. In particular, for inspecting such
this disease, the concrete crack detection is always required to
accurately obtain the crack characteristics, including localization
and quantification information. To completely and efficiently
detect concrete cracks, it is needed to generate a wide-view
panorama with good image quality from a large set of high-
resolution images acquired from concrete surfaces. In the en-
gineering practice, the bridge bottom surfaces are suspended in
midair with repetitive structures, poor texture, dim light, per-
spective distortion, and out-of-focus blurring introduced by depth
of field, which make the image data collection and processing
extremely challenging. In the past decades, some attempts have
been carried out to automate the crack detection procedure (Oh
et al., 2009, Wang et al., 2010, Nejad and Zakeri, 2011, Prasanna
et al., 2014, Zhang et al., 2014), but, as far as we know, only
few studies of image stitching for concrete bottom surfaces were
done.

We have developed a bridge inspection system which is com-
posed by a specially designed truck with a huge and flexible
mechanical arm and a machine vision robot system with various
sensors as shown in Figure 1. The intended use case can be
summarized as follows. The operator first pulls over to the side
of the bridge to be observed and the multi-linkage arm system
dispatches the inspection robot beneath the bridge. Next, the laser
range finder (LRF) starts to scan the local bridge section via the
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Figure 1: Overview of the total mechanism for our developed
bridge inspection system. The arcs with double arrows mean
rotation operation and the lines with double arrows mean
elongation and shortening of each joint of the multi-linkage arm.

rotation device while the platform is basically stable. With the
planar segmentation method (Jakovljevic et al., 2015), the local
bridge structure information can be acquired from LRF scanning
data. Then, the obtained information is applied to path planning
for the truck and the inspection robot. After that, the images
together with metadata (i.e., the position and orientation of the
cameras obtained by the LRF and high-precision incremental
encoder (HPIE)) of the bridge bottom surfaces are collected by
the sensors mounted on the inspection robot close to the surfaces
with the motion of the trunk.
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1.2 Challenges

The most important challenges for solving the above mentioned
problems using images from the inspection robot can be summa-
rized as follows:

Poor texture: It always presents poor texture on the smooth
concrete surfaces. In addition to the stains, spots and cracks, there
are only a very few prominent features on the surfaces making the
feature matching difficult for image stitching.

Perspective distortion and out-of-focus blurring: While ac-
quiring images in a short distance about 1-2m which is similar
with the undulations of the bottom surfaces so that the assumption
of a lens-focusing planar surface of the observed objects is
no longer true. The undulations can cause severe perspective
distortion and out-of-focus blurring in high-resolution images
captured by a 85mm lens, which make corresponding points
matching very difficulty. In some extreme cases, the matching
between overlapping images needs the aid of depth information
acquired from the 3D cameras.

Non-orthograph: The industrial camera sensors of the inspec-
tion robot are not perpendicularly mounted to the surfaces in
order to effectively increase the coverage area. Thus, a perfect
ortho-view of the images cannot be provided, which increases the
difficulty to stitch all the images of the bridge bottom surfaces to
a wide-view single composite ortho-view image.

Rough position and orientation: Due to the restrictions of both
loading capacity and working conditions, the common position
and orientation technologies, such as GPS and IMU, are not
competent. The LRF and HPIE sensors are combined to provide
rough position and orientation information. What’s more, due to
the dynamic instability of the inspection robot platform itself, the
errors in orientation will be further amplified, which increases the
complexity and difficulty of image stitching.

1.3 Related Works

A lot of image stitching approaches have been developed in
recent years for different applications. A fast image stitching and
editing approach for panorama painting are proposed in (Xiong
and Pulli, 2010). The 3D object reconstruction from multiple-
station panorama imagery was developed in (Luhmann and Teck-
lenburg, 2004, Santagati et al., 2013). An as-projective-as-
possible warping method and a novel moving direct linear trans-
formation (Moving DLT) technique are developed to seamlessly
stitch image regions that are inconsistent with the projective
model (Zaragoza et al., 2014). The above methods can be
applied to several images well but not effective for a large amount
of images. The image stitching method (Jia and Tang, 2008)
uses structure deformation which depends on the 2D features
detected in the images. However, when there are only few
or no 2D features, the optimization procedures are likely to
fail. Georeferencing transformation to optimize stitching for
images acquired by Unmanned Aerial Vehicles (UAVs) had been
implemented in (Liu et al., 2011, Yahyanejad et al., 2010).
In such methods, the tests were conducted in urban areas so
that the corresponding images would not encounter texture and
light problems. The method (Michaelsen, 2011) deals with the
applications such as underwater monitoring a platform with a
camera moving close to a large roughly planar scene, but the
results of the method show great affine deformation.

In this paper, we have proposed a novel approach for image
stitching derived from the concrete bottom surfaces. The new
approach is based on the assumption that the rough position and

orientation for each image have been obtained by the inspec-
tion robot. Normally, the overlap between neighboring images
is enough large, in general, in more 50%. But some other
issues, such as displacement and rotation between neighboring
images, as well as the scale factor, need to be solved with
at least four corresponding points. In our method, all images
are initially aligned and divided into several groups with the
rough position and orientation data. Then, the 3D structure
lines existed in bridge bottom surfaces are extracted from the 3D
cloud points acquired with 3D cameras, which are combined with
the corresponding points between images to perform a position
and orientation optimization in each group to increase the local
consistency. Next, a homographic refinement between groups is
further applied to increase the global consistency and generate
a global panorama. Finally, we apply a multi-band blending
algorithm to generate a large-view single composite image as
seamlessly as possible with the open source software Enblend∗,
which greatly eliminates both the luminance differences and
the color deviations between images and further conceals image
parallax.

2. OUR METHOD

2.1 Geometrical Alignment Optimization

The major goal of image stitching is to generate a perfect panora-
ma of the wide-view observed area from multiple images. In
our application, the images are collected from the bridge bottom
surfaces along a general scanning direction with the motion of the
trunk, which is repeated in the back-and-forth motion in different
camera acquisition areas with different places and orientations of
the inspection robot until all of the bottom surfaces are covered.
As for hundreds of images {Ii} of one scanning in sequence,
a wide-view panorama can be perfectly constructed with our
specially designed method.

We first review the estimation of projective transformations:

sx = K[R t]X, (1)

where s is an arbitrary scale factor, and x = [x, y, 1]⊤ and
X = [X,Y, Z, 1]⊤ denote a 2D point in the 2-D image plane and
its corresponding 3D point on the object surface, respectively. K
is a 3×3 intrinsic matrix, (R, t), called the extrinsic parameters,
is comprised of the 3 × 3 rotation matrix R and the 3 × 1
translation vector t, which relate the world coordinate system
(i.e., the bridge 3D model) to the camera one. The intrinsic
matrix K can be easily calibrated by the Zhang’s flexible camera
calibration method (Zhang, 2000). The extrinsic parameters,
i.e., (R, t), are derived from the rough position and orientation
obtained by combining LRF and HPIE.

2.1.1 Alignment With the intrinsic and extrinsic parameters,
a 2D image point x can be back-projected to the 3D bridge
bottom surface model at its corresponding 3D point X based
on the principle that the camera optical center C, x and X
are collinear in 3D space as shown in Figure 2. As the above
mentioned, the 3D model of the local bridge bottom is obtained
by the LRF sensor. All of the camera positions and the 3D bridge
surface model are unified into a same world coordinate system,
and then the intersection between the 3D back-projection line
and the bridge bottom surface can be obtained along the vector
derived from (x,C), which can be represented as follows:

X = f(x,B,K,ϑϑϑ), x ∈ I, (2)

∗Enblend is available at: http://enblend.sourceforge.net/
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Figure 2: A back-projection illustration with the collinear
principle of the camera optical center C, a 2D image point x and
its corresponding 3D point X: the 3D structure and the profile
map (Bottom-Right) of the bottom surface of a bridge whose
structure named “small box girder”.

Figure 3: Examples of back-projection processes of the image
corresponding feature points (Left) and the structure line (Right).
The first optimization goal is to minimize the differences between
the corresponding points X and X′ for the former and the second
one is to minimize the distances between the blue 3D structure
line and the points like x located in the green 2D structure line in
the image for the later.

where f(·) denotes the back-projection function with a 2D image
point x in an image I, the bridge bottom surface model B, and the
intrinsic matrix K and the rough extrinsic parameters represented
ϑϑϑ = {tx, ty, tz, θx, θy, θz} consisting of three translations and
three rotation angles. Due to that B and K are the same for
all the images, the function f(x,B,K,ϑϑϑ) will be expressed by
f(x,ϑϑϑ) for simplicity in this paper. If ϑϑϑ is accurate, the perfect
panorama can be easily conducted by the back-projection method
described in Eq. (2). We propose a perception criterion function
to estimate the accuracy of extrinsic parameters of n images, i.e.,
ΘΘΘ = {ϑϑϑi}ni=1, as follows:

E(ΘΘΘ) =

n∑
i=1

∑
x∈Ii

n∑
j=1

∑
x′∈Ij

∥f(x,ϑϑϑi)− f(x′,ϑϑϑj)∥2,x ↔ x′,

(3)
where x ↔ x′ denotes a pair of corresponding points from two
overlapping images as shown in Figure 3, which will be described
in Section 2.1.2.

2.1.2 Point Matching It has been widely known that the
matching accuracy of corresponding points normally affects the
quality of image stitching due to severe image parallax. Here
the found 2D corresponding points between two adjacent im-
ages with overlapping regions will be utilized to estimate the
homographic model between these two images. According to
the homographic model, not only the position and orientation
of the images can be optimized, but also the alignments can be
improved. For our specific application, we design an efficient ap-
proach to find enough corresponding points for image matching,
which is described as follows.

For efficiency and robustness, the original images are scaled to a
more reasonable size for SIFT (Rublee et al., 2011) extracting and
matching corresponding points between images with overlapping
regions. By the aid of rough positions and orientations of
acquired images based on LRF and HPIE sensors, the adjacent
relationships between images are easily found. A proper zooming
scale is important to ensure accuracy and speed up the feature ex-
tracting and matching process. In our application, the originally
acquired images with the size of 5120×3840 pixels will be down-
sampled with a scale factor 1/16. Then, we apply a correlation
coefficient criteria to match the extracted feature points between
images. Given the feature points p and p′ from two adjacent
images I and I′, respectively, the matching evaluation criteria is
formulated as:

ρ(p,p′)=
|
∑

q∈N (p)

∑
q′∈N (p′)(I(q)−Ī(p))(I′(q′)−Ī′(p′))|√∑

q∈N(p)(I(q)−Ī(p))2 ·
∑

q′∈N(p′)(I
′(q′)−Ī′(p′))2

,

(4)
where Ī(p) and Ī′(p′) denote the average intensities of neighbor-
ing patches N (p) and N (p′) with the size of m×n, i.e., Ī(p) =

1
m×n

∑
q∈N (p) I(q), Ī

′(p′) = 1
m×n

∑
q′∈N (p′) I

′(q′). When
the value of ρ(p,p′) is close to 1, the two feature points p and
p′ are most likely to be corresponding image points. A fixed
threshold τ is set for ρ to avoid to trap into a non-optimal “local
maximum”, for example, τ = 0.8 used in this paper.

After a set of matched corresponding image points, the homog-
raphy matrix H can be easily recovered by RANSAC (Fischler
and Bolles, 1981). Next, a corner detection method (Shi and
Tomasi, 1994) is applied to obtain sufficient quantity of feature
points from images. After that, the homography matrix H is used
to guide finding the corresponding feature points from adjacent
aligned images based on an accurate searching constraint. To
improve the robustness of the position and orientation optimiza-
tion, we need to find a large set of reliable corresponding feature
points. Although the Shi’s method (Shi and Tomasi, 1994) can
easily detect enough corners, it may result in a very non-even
distribution for our application due to poor texture, which makes
the optimization unstable. As we know there are usually some
bevel structures of the bridge bottom, and the profile seams to
be straight along the intersection line between the bevel level
structures. This prior knowledge can be effectively utilized to
enhance the optimization by considering to match the structure
lines in 2D images to those of the 3D bridge model. In this case,
the optimization function is modified as follows:

Ê(ΘΘΘ) = E(ΘΘΘ) +

n∑
i=1

∑
p∈Li

∥f(p,ϑϑϑi)− l(p,ϑϑϑi)∥2, (5)

where E(ΘΘΘ) is defined as in Eq. (3), p denotes the sampled
point on one of the extracted structure lines Li from Ii, and
l(p,ϑϑϑi) denotes the corresponding point of the sampled p, which
is obtained by perpendicularly projecting p to the 3D structure
lines in the 3D model B as shown in Figure 3. The optimal
solution:

Θ̂ΘΘ = argmin
ΘΘΘ

Ê(ΘΘΘ), (6)

can be achieved by minimizing the error function in Eq. (5) using
the Levenberg-Marquardt (L-M) algorithm (Moré, 1978).

2.2 Structure Line Extraction

This section presents the details on extracting structure lines from
3D point clouds captured by 3D cameras and projecting them to
images based on the geometrical calibrations. The 3D view of
the special bevel structure has been illustrated in the Figure 2. As
mentioned before, there exist some approximate 3D straight lines
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Figure 4: An example of dim structure line in a 2D image (Left),
but obvious enough in the corresponding 3D cloud points (Right)
collected by the 3D camera.
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Figure 5: The relationships between the coordinate systems of
the CCD image and 3D data, which include two image coordinate
systems (o′ − x′y′ and o′1 − x′

1y
′
1), two image space coordinate

systems (o − xyz and o1 − x1y1z1), and one object space
coordinate system (Ow −XwYwZw).

introduced by the bevel structures. In general, it seams that there
is a bigger intensity gradient in these regions in some images, but
not all. In other words, it is not significant and robust enough to
extract these lines by intensity characteristics and alway suffers
from uncertainty. What’s more, the geometrical alignment may
be worse with such these inaccurate structure lines. Figure 4
shows an example of the dim structure line and the corresponding
3D cloud points where the structure line is obviously observed in
3D data but difficulty found in the 2D image.

2.2.1 Calibrations: In our system, the 3D cameras and the
industrial CCD cameras are mounted on a stable inspection robot
platform and they constitute a rigid-body structure. The 3D point
clouds and 2D images captured by these two kinds of sensors
are collected synchronously. As shown in Figure 5, the near
infra-red (NIR) line laser casts the light on the object surface,
and then the 3D cameras and the industrial cameras collect data
synchronously. It relates to five coordinated systems in this data
acquisition process: two image coordinate systems (o′ − x′y′

and o′1 − x′
1y

′
1), two image space coordinate systems (o − xyz

and o1 − x1y1z1), and one object space coordinate system
(Ow − XwYwZw). We calibrate the 3D camera via a square
chessboard which can recover the camera intrinsic matrix and the
relative relation (consisting of a rotation matrix and a translation
vector) with respective to the object space coordinate system. In
this way, the data can be effectively fused if the relative relation
between two cameras has been calibrated. This relative relation,
consisting of a 3 × 3 rotation matrix R1 and a 3 × 1 translation
vector t1, between o − xyz and Ow − XwYwZw is formulated

as:
Xo = R1XOw + t1, (7)

where Xo and XOw denote 3D coordinates in the coordinate
system o − xyz and Ow − XwYwZw, respectively. After the
calibration between the 3D camera and the CCD camera, the
relative relation, consisting of a 3 × 3 rotation matrix R2 and
a 3× 1 translation vector t2, between o− xyz and o1 − x1y1z1
is formulated as:

Xo1 = R2Xo + t2, (8)

where Xo1 denotes 3D coordinates in the coordinate system o1−
x1y1z1. So, the relative relation between Ow − XwYwZw and
o1 − x1y1z1 is formulated as:

Xo1 = R2(R1XOw + t1) + t2. (9)

Then, the coordinates in the image space coordinate system o1 −
x1y1z1 can be projected to the image plane coordinate system
o′1 − x′

1y
′
1 with the criterion as:

[u, v, 1]⊤ = KXo1/X
(3)
o1 , (10)

where [u, v]⊤ denotes image coordinates in the coordinate system
(o′1−x′

1y
′
1) in pixels, K is the intrinsic matrix of the CCD camera,

and X
(3)
o1 is the third value of the vector Xo1 .

The position and orientation information provided by the LRF
sensor is also calibrated via a special method (Kurnianggoro et
al., 2014). With the calibrated LRF, the local bridge section is
scanned and the corresponding 3D model is derived from the
scanning data. Then, the 3D model and the localization data
are applied to the image geometrical alignment described in
Section 2.1 as the initial values.

2.2.2 3D Structure Line Extraction: According to the cali-
bration, the 3D data can be projected to the CCD camera images.
So, to obtain the structure lines in 2D images, the remaining task
is to extract 3D structure lines from 3D cloud points collected by
the 3D cameras as shown in Figure 4.

The 3D camera collects a profile data along the light NIR line
laser casted on the object surface, which is stored as a set of 3D
cloud points with a fixed number. A projection map of a profile
can be generated by:[

ui

vi

]
=

[
su 0
0 sv

] [
Xi −Xmin

Zi − Zmin

]
, (11)

where [ui, vi]
⊤ is the projected image coordinate of the 3D point

[Xi, Yi, Zi]
⊤ in the map, (su, sv) is two scale factors in X and

Z direction, and [Xmin, Zmin]
⊤ is a minimum coordinate vector

of a profile.

After the projection, it’s clear that the profile is a regular obtuse
angle formed by two rays as shown in Figure 6(a). It’s easy to
detect the two rays by Hough Transformation (Duda and Hart,
1972) and intersect these two rays at a point as a vertex on the 3D
structure line. To deal with the problem of two or multiple lines
detected along the two side of the ray, they should be merged to
one according to the collinear principle. A 2D line can be written
as a linear equation as:

au+ bv + c = 0, (a ≥ 0), (12)

where a and b are normalized and not both equal to zero, and
(u, v) is the point coordinate in the image. Then, the orientation
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(a) (b) (c)

(d) (e) (f)

Figure 6: The illustration of extracting the vertexes on the 3D
structure line: (a) the projection map of a 3D profile; (b) the
intersection point marked in a red circle formed by the two
green lines detected by Hough Transformation; (c) the found
true vertex in the projection map; (d) the micro-structure of the
bevel section which results in the intersection being x1 instead
of x2 sometimes; (e) the demonstration to find true vertex by
searching the neighboring regions with a radius d at the point
with a maximum β angle treated as the true vertex; (f) the finally
extracted structure line points displayed in red on the 3D cloud
points.

difference of two detected lines l1 and l2 is calculated as:

do(l1, l2) =
|a1a2 + b1b2|√

(a2
1 + b21) (a

2
2 + b22)

. (13)

When do(l1, l2) is close to 1.0, the two lines l1 and l2 are most
likely to be collinear. If these two lines are merged, the new linear
equation will be:

a1 + a2

2
u+

b1 + b2
2

v +
c1 + c2

2
= 0. (14)

With the detected lines merged, the remaining lines are usually
the two required rays forming an intersection point as the vertex
on the 3D structure line. For continuous 3D profiles, all these
vertexes are collected to represent the 3D structure line.

In our test, the intersection formed by two rays is not usually
located on the vertex on the 3D structure line as shown in
Figure 6(b), due to the micro-structure presented in Figure 6(d).
A neighborhood searching strategy can be effective to deal with
this problem. As shown in Figures 6(d) and (e), the point x2 is
the true vertex and x1 is the intersection point. Given a searching
radius d, each point locating within the range forms an angle with
its neighbors. The point with a maximum angle βmax is most
likely to be the true vertex.

Figure 6(f) shows the structure line extraction results. The ac-
quired structure lines usually are not straight due to the unsteady
interference during the moves of the inspection robot. The line
fitting method will be conducted by RANSAC (Fischler and
Bolles, 1981) to get the complete straight line. According to
the calibration results presented in Section 2.2.1, the fitted 3D
structure lines can be projected to the CCD image in sequence. In
fact, the CCD camera collects images at a low frequency of 6Hz,
and the 3D camera acquires data at a high frequency of 339Hz.
The above relative relation sets up only in the condition that the
two cameras exposure at the same time. Then, we can assume that

…

…

Figure 7: The fusion strategy of dealing with 3D data and
2D image data captured at the different frequencies. The blue
rectangles denotes the CCD images, and the green and red
vertical lines indicate the 3D profiles. The i and i + 1 represent
the image indexes. The green lines mean that the CCD camera
and 3D camera exposure at the same time.

Figure 8: An example of the extracted structure lines based on
image intensity (Green Line) and 3D point clouds (Red Line).

the following data until to the next CCD camera exposure can be
treated as adding a translation vector to the data of the moment.
According to the projection theory, all the 3D structure lines can
be projected to the CCD images correspondingly, as shown in
Figure 7.

Figure 8 illustrates an example of the extracted structure lines
based on image intensity and 3D point clouds for the image
displayed in Figure 4, from which it’s obvious that the later
method is more robust.

2.3 Global Alignment and Blending

Via the optimization method described in Section 2.1, we can
effectively align a small set of continuously captured images but
cannot effectively enough align hundreds of images of the bridge
bottom surface at the same time. To make it more efficient for our
application, we propose to split hundreds of images into multiple
groups, in which the last image of a group is also the first image
of its next one. Firstly we optimize the position and orientation
parameters of images in each group. Then, we stitch each group
of images into a single composite image. Next, the homography
matrix of the last-and-first image pairs between two adjacent
groups can be applied to stitch the groups. The homography
matrix is robustly established by image feature points based on
the method described in Section 2.1.2. To generate a wide-view
composite panorama of the bridge bottom surface from hundreds
of high-resolution images, the remaining task is to eliminate
the luminance difference and color deviations, and conceal the
small image parallax, which are achieved by apply a multi-band
blending based on stitching lines using a open source software
“Enblend”.
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Figure 9: A detailed view of a small region in a mosaicked image
by a simple superposition with luminance and color differences.

Figure 9 shows a small region of a mosaicked image by a sim-
ple superposition after the group optimization, but with visible
luminance and color differences between images. The open
source software “Enblend” is a tool for compositing images in
such a way that the seams between the images can be efficiently
concealed by applying a multi-band blending on all the aligned
images based on good stitching lines found between images. In
“Enblend”, a mask implies the position of the corresponding
image in the overall panorama is required, and it is stored as an
image channel. So, the internal memory of the computer and
computation will be wasted a lot if an overall mask is provided for
each image. We propose an image grouping strategy to overcome
this problem. For a panorama stitched from n input images,
we can firstly divide these images into several groups with the
sequence information and each contains ⌊

√
n⌋ images. In each

group, a mask with the size of this region is generated for every
image. Then, the “Enblend” is applied to generate seamless
panoramas in each group. The final overall seamless panorama
can be acquired by repeating the above procedures.

3. EXPERIMENTAL RESULTS

In this section, our proposed method was evaluated on real bridge
bottom surface images. The chosen bridge is with the structure
named “small box girder” as shown in Figure 2. A sequence of
244 × 2 images were acquired by two JAI SP-20000C-CXP2
cameras, and each image with a size of 5140 × 3840 in pixels
and a fixed frequency of 6Hz, while the inspection robot moved
along a general scanning direction. The 3D cloud points of the
corresponding area were acquired by two AT C2-2040(HS)-GigE
cameras with a fixed frequency of 339Hz. The 3D model of this
bridge section was obtained by a LRF called SICK LMS151.

Figure 10 shows the overall feature-points-based and structure-
lines-aided stitched panoramas, which were generated by the
business software “PTGui” † and the open source software “En-
blend” with the global alignment obtained by our method, re-
spectively. To visually compare the stitching results, we chose
some regions in all panoramas for more obviously comparing the
quality of image stitching by human visual inspection as shown
in Figure 11. According to the results shown in Figures 11(b)
and (c), we can see that both the image feature points and the
structure lines are effective in the stitching processes. What’s
more, the structure-lines-based not only can improve the position
and orientation data via our optimization method, but also can be
a consistency constraint to optimize the stitching results. It may

†PTGui is available at: http://www.ptgui.com/

lead to some mistakes when the structure lines are inaccurate in
some regions, such as the two correctly stitched regions (labeled
by green ellipses in Figure 11(b)) but incorrectly optimized
with the inaccurate structure lines (labeled by red ellipses in
Figure 11(c)).

The panorama conducted by “PTGui” has the largest distortion
as shown in Figure 10(d), which indicates that the results of
“PTGui” are tend to trap in local optimum with poor performance
in the overall image. In our method, the structure lines in
images can accomplish local and global constraints to avoid this
problem. The final stitched panorama obtained via “Enblend”-
based seam lines optimization and image blending seems almost
perfect with very few stitching mistakes, as shown in Figure 10(e)
and Figure 11(e).

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a novel approach to create a
wide-view panorama as seamless as possible of the concrete
bridge bottom surface from hundreds of high-resolution images
for bridge inspection, especially detecting cracks. The proposed
approach is based on the assumption that the rough position
and orientation information for each image have been obtained
by the inspection robot by fusing the LRF and HPIE sensor
data. In our method, each image is initially aligned and divided
into several groups with the rough position and orientation data.
Then, 3D structure lines are obtained from the 3D cloud points
acquired with 3D cameras and projected onto the 2D images to
generate 2D structure lines, which are combined with the cor-
responding feature points between images to perform a position
and orientation optimization in each group to increase the local
alignment consistency. Next, a homographic refinement between
groups is applied to increase the global alignment consistency.
Finally, a fast seamless blending method with the open source
software “Enblend” is used to eliminate both image luminance
difference and color deviations. The experimental results on a
set of more than 400 images captured from a real bridge bottom
surface demonstrate that the proposed method can deal with the
image stitching problem well and achieve satisfied results for
the inspection application of concrete bridge bottom surface.
The major benefit of optimization via 3D structure lines is the
local and global alignment consistency for image stitching. It
can not only overcome the limitations of texture and affine
deformation, but also improve the optimized alignment results
based on image features alone. By comparison with the business
software “PTGui”, our method can obtain better stitching results.

In the future, some parts of the algorithm can be improved.
First, the combined feature points and structure lines are equally
important during the optimization of position and orientation
data. It needs a more effective strategy to minimize the errors
resulting from one of which are inaccurate. As we can see, the
affine deformation of images are obvious in this application. So,
the optimization between groups takes use of the homographic
model only is not good enough. Some other transformation, such
as affine model, may also be combined to get much better results.
In addition, the structure line information can be sufficiently
utilized in optimization between groups. Finally, to further
reduce both the memory requirement and the computation cost,
when panoramas of all groups are conducted, the next blending
step can be carried out just in the overlapped regions between
panoramas not for overall.
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(a) Stitched panorama with the rough ΘΘΘ

(b) Stitched panorama with the optimized ΘΘΘ via the image feature points alone

(c) Stitched panorama with the optimized ΘΘΘ via combining image feature points and structure lines

(d) Stitched panorama with the business software “PTGui”

(e) Stitched panorama with the open source software “Enblend” based on the optimized ΘΘΘ in (c)

Figure 10: The stitched panoramas under different conditions. The detailed views of the regions labeled by the red rectangles in these
panoramas are correspondingly presented Figure 11.
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(a) (b) (c) (d) (e)

Figure 11: The detailed views of the corresponding regions in the red rectangles of Figure 10. There are some ellipses in these regions
denoting that the correctly stitched regions are labeled in green and otherwise are in red.
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