
Neurocomputing 338 (2019) 139–153

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

DeepCrack: A deep hierarchical feature learning architecture for crack

segmentation

Yahui Liu, Jian Yao

∗, Xiaohu Lu, Renping Xie, Li Li

Computer Vision and Remote Sensing (CVRS) Lab, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, PR China

a r t i c l e i n f o

Article history:

Received 14 December 2017

Revised 10 January 2019

Accepted 15 January 2019

Available online 22 January 2019

Communicated by Dr. Yu Jiang

Keywords:

Convolutional neural network

Crack detection

Semantic segmentation

Hierarchical convolutional features

Guided filtering

Crack detection dataset

a b s t r a c t

Automatic crack detection from images of various scenes is a useful and challenging task in practice.

In this paper, we propose a deep hierarchical convolutional neural network (CNN), called as DeepCrack,

to predict pixel-wise crack segmentation in an end-to-end method. DeepCrack consists of the extended

Fully Convolutional Networks (FCN) and the Deeply-Supervised Nets (DSN). During the training, the elab-

orately designed model learns and aggregates multi-scale and multi-level features from the low convo-

lutional layers to the high-level convolutional layers, which is different from the standard approaches of

only using the last convolutional layer. DSN provides integrated direct supervision for features of each

convolutional stage. We apply both guided filtering and Conditional Random Fields (CRFs) methods to

refine the final prediction results. A benchmark dataset consisting of 537 images with manual annotation

maps are built to verify the effectiveness of our proposed method. Our method achieved state-of-the-art

performances on the proposed dataset (mean I/U of 85.9, best F-score of 86.5, and 0.1 s per image).

© 2019 Elsevier B.V. All rights reserved.

1

b

t

i

c

m

t

t

o

t

l

t

o

p

c

c

“

d

u

p

N

m

t

T

w

d

s

m

b

(

u

s

s

e

d

r

f

r

c

t

h

0

. Introduction

Crack presents important information for the safety and dura-

ility of the man-made buildings. Hence, it is of great significance

o detect and analyze cracks for the maintenance of these build-

ngs. In practice, the demand for automatic crack detection has in-

reased rapidly every year. A variety of traditional computer vision

ethods of crack detection from images have been proposed in

he past decades. In general, these methods can be classified into

wo categories: local-feature-based and global-feature-based meth-

ds [1] . The former methods exploit the local features, such as in-

ensity, gradient, local variance, and local texture anisotropy. The

ater methods track and extracts crack curves in an overall view

hrough dynamic programming to optimize target functions based

n certain criteria.

Since visually salient cracks are related to a lots of visual

atterns, it is difficult to design a universal method to deal with

racks in various scenes. In other words, precisely detecting

rack from natural images involves visual perception of various

levels” [2,3] . However, both the mentioned two kinds of crack

etection methods can not satisfy this requirement so that they

sually suffer a series of problems in practice. Recently, the su-
∗ Corresponding author.

E-mail address: jian.yao@whu.edu.cn (J. Yao).

URL: http://cvrs.whu.edu.cn/ (J. Yao)

e

“

s

r

o

ttps://doi.org/10.1016/j.neucom.2019.01.036

925-2312/© 2019 Elsevier B.V. All rights reserved.
ervised deep learning methods, such as Convolutional Neural

etworks (CNNs), have achieved state-of-the-art performances in

any high-level computer vision tasks, such as image recogni-

ion [4] , object detection [5–7] , and semantic segmentation [8–12] .

hese are powerful visual models that yield hierarchical features,

hich is an ideal method to aggregate multiple “levels”.

In the conventional approaches, the main problem in crack

etection is the way to deal with noises introduced by stains,

pots, uneven illumination, blurring, and multiple scenes. Some

ethods make an assumption that there is a clear distinction

etween noises and cracks, such as Iterative Clipping Method

ICM) [13] which assumed that the intensities along cracks were

sually darker than those of its surroundings. Li et al. [14] pre-

ented a Neighboring Difference Histogram Method (NDHM) to

egment a crack image with a globally optimized threshold. How-

ver, the above assumption suffer issues when there are many

ark spots and shadows in the test image. To improve the cor-

ectness and completeness of crack detection, the wavelet trans-

orms based methods [15,16] were proposed to raise up the crack

egions. However, they may not handle well the cracks with high

urvatures or bad continuities because of the anisotropic charac-

eristics of wavelets. The “FoSA” approach [1] was proposed to

xtend the NDHM with a stronger anti-noise capability and the

CrackTree” method [17] was designed to remove the pavement

hadows. These methods showed outstanding precision and recall

ates, but they are too complex and time-consuming. Some meth-

ds took both brightness and connectivity into consideration by

https://doi.org/10.1016/j.neucom.2019.01.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.01.036&domain=pdf
mailto:jian.yao@whu.edu.cn
http://cvrs.whu.edu.cn/
https://doi.org/10.1016/j.neucom.2019.01.036

140 Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153

p

S

a

s

a

t

t

p

w

o

i

i

(

fi

T

t

t

e

c

t

m

f

2

2

p

s

f

F

e

fi

o

l

t

t

l

s

w

c

L

fi

t
measuring the image texture anisotropy, such as Conditional Tex-

ture Anisotropy (CTA) [18] and Free-Form Anisotropy (FFA) [19] ,

which showed good results on crack segmentation but were sensi-

tive to the edges which may enhance the noises sometimes. Then,

saliency-based methods [20] were proposed to suppress noises. Hu

et al. [21] used the Local Binary Pattern (LBP) method to ana-

lyze the basic local features to get good crack segmentation re-

sults, but the parameters need to be adjusted for each image.

Zhang et al. [22] proposed using the Black Top-Hat (BTH) transfor-

mation and the threshold segmentation method to detect cracks

from the concrete tunnel surface images but their method may

encounter problems in uneven illumination images. More recently,

Zhang et al. [23] established a Region of Aggregation (ROA) method

to take multi-cues (cracks’ spatial distribution, intensities, and geo-

metric features) into account and a Region of Belief (ROB) concept

for crack region growing. However, such method was only designed

for thin cracks in 2–5 pixels wide.

Shortcomings of these traditional crack detections are obvious:

each method was specifically designed for a specific database or

scene. Once the dataset or scene are changed, the crack detec-

tors tend to suffer failure. For example, the FoSA, CrackTree, and

FFA methods can work well for thin cracks but fail to deal with

wide cracks. The detector sometimes works, but sometimes fails,

which means that the extracted features are not generalized well.

The CNNs show powerful abilities that yield abundant hierarchical

features, which can make breakthroughs in such applications.

Up till now, there are some attempts of applying CNNs on

object segmentation. The first strategy utilizes separated mecha-

nisms for feature extraction and image segmentation, in which it

treats the CNNs as an assistant tool of the traditional computer

vision methods. Some representative examples like [24,25] ap-

plied the CNNs to extract meaningful features, used superpixels

to represent the structural pattern of the image, and then ob-

tained the final labeling by aggregation of the classifier predic-

tion. However, if there are errors in the initial superpixels, it may

lead to poor predictions. The second strategy directly learns a

nonlinear model from the images and ground truth label maps.

Chen et al. [8,26] used a Conditional Random Field (CRF) to re-

fine the low-resolution segmentation results obtained from a CNN,

which means that they employed the CRF as a post-processing

step (separated from the CNN training). Fully Convolutional Net-

works (FCN) [9] learns to upsample its feature maps – the outputs

of the convolutional layers – to achieve pixel-wise segmentation,

but can not produce very accurate labeling results. FCN showed

that different stages of the convolutional layers obtained diverse

meaningful features, for example, low layers kept more structure

information, while the top layers obtained more abstract features

for object recognition. Therefore, coarse feature maps of the top

layers are not enough to obtain the refined segmentation results.

To overcome it, Zheng et al. [10] developed an end-to-end net-

work which jointly learned the parameters of the CNN and CRF

in a unified architecture termed CRF-RNN. The predictive perfor-

mance of FCN was improved further by CRF-RNN and fine-tuning

it on large datasets [27] . The fact that joint training helps was also

presented in other recent studies [28,29] . Meanwhile, the decon-

volutional network [30] and its semi-supervised variant decoupled

network [31] achieved better performances than FCN although at

the cost of a more complex training. SegNet [12] proposed an idea

of the encoder-decoder architecture, which discards the fully con-

nected layers and shows the benefit of reducing the number of

parameters significantly. Multi-scale deep architectures were also

developed, which came into two main directions: (1) inputting

images at several scales into the networks [11,29] ; (2) combining

feature maps from different layers of a deep architecture [32–34] .

Their collective ideas were to learn multi-scale features, in which

both local and global features will be kept.
With the development of deep learning, a few methods that ap-

lied CNNs to achieve crack detection has appeared sequentially.

ome methods like [35–37] treated CNNs as a classifier to predict

 label for each local patch, which was still far from pixel-wise

egmentation. In addition, both the mentioned traditional methods

nd CNNs-based methods have not published an open crack de-

ection dataset, so the performances of these methods are some-

imes difficult to make a comparison. As shown in Fig. 1 , we ex-

lore the meaningful features of each level layer in the following

ay: (1) predicting crack segmentation results with feature maps

f each convolutional stage, termed as side output; (2) concatenat-

ng all side outputs to produce a final fused result; (3) supervis-

ng both side outputs and fused results by Deeply-Supervised Nets

DSN) [38] , which forms an integrated direct supervision; (4) re-

ning the final fused result by applying Guided Filtering (GF) [39] .

he parallel architecture like HED [3] was applied to crack de-

ection and achieved the state-of-the-art performance. DeepCrack

akes full use of the advanced methods to achieve a deep end-to-

nd and pixel-wise crack segmentation architecture, which is the

ore topic of this paper. In addition, we built an open benchmark

o evaluate the crack detection systems, in which multi-scale and

ulti-scene cracks are manually annotated.

In summary, our proposed crack segmentation method has the

ollowing contributions:

1. We developed an automatic crack segmentation method based

on CNNs. It learns hierarchical features of cracks in multiple

scenes and scales effectively. Then, both CRFs and GF methods

are applied to refine the predictions of CNNs.

2. We explored the learning stage of CNN by using specially de-

signed loss function to alleviate the imbalanced data distribu-

tion, in which the negative pixels are far more than the positive

ones. To make the training effective, we apply DSN to facilitate

the feature learning of each convolutional stage.

3. We established a public benchmark dataset with cracks in

multi-scale and multi-scene to evaluate the crack detection sys-

tems. All of the crack images in our dataset are manually an-

notated. To our knowledge, this is the first open work in such

field.

4. We established complete metrics to evaluate crack detec-

tion systems, including semantic segmentation evaluations,

Precision-Recall curve, and Receiver Operating Characteristic

(ROC) curve.

. Proposed method

.1. Model architecture

We formulate crack segmentation as a binary image labeling

roblem, where “0” and “1” refer to “non-crack” and “crack”, re-

pectively. Such application is a task that requires both high-level

eatures and low-level cues [40] . Our architecture, as showed in

ig. 1 , aggregates hierarchical features acquired from multiple lay-

rs. We use the 13 convolutional layers which correspond to the

rst 13 convolutional layers in the VGG-16 net [41] designed for

bject classification. The fully connected layers and fifth pooling

ayer are discarded due to the following reasons: (1) we expect

he meaningful side-output with different scales, and a layer af-

er the fifth pooling yields a too small output plane (the interpo-

ated prediction feature map is too fuzzy to generate a refined re-

ult); (2) the fully connected layers are computationally intensive,

hich is memory/time-consuming [3] . Each convolutional layer is

omprised of convolution, batch normalization [42] and Rectified

inear Unit (ReLU) [43] . Here, the convolution is a process with a

lter bank to produce a set of feature maps. The batch normaliza-

ion is applied to reduce internal covariate shift. The ReLU layer

Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153 141

Fig. 1. An illustration of our proposed DeepCrack architecture. In this architecture, there are no fully connected layers, the side-output layers are inserted after the convo-

lutional layers, deep supervision is applied at each side-output layer and then all of them are concatenated to form a final fused output. In this way, the final output layer

acquires multi-scale and multi-level features as the plane size of the input of side-output layers becomes smaller and the receptive field size becomes larger. The fused

prediction is refined by guided filtering with the first side-output layer.

c

w

o

l

f

c

t

fi

t

o

v

E

f

t

a

fi

s

o

a

c

l

a

O

b

b

t

t

t

F

s

a

r

p

c

t

i

m

w

s

n

R

(

i

w

t

G

a

t

o

t

t

t

s

e

a

m

t

s

w

d

e

2

m

F

{

1

1

d

o

b

m

o

f

o

c

w

p

m

L

w

P
omputes the activation function max (0, x), which makes the net-

orks able to learn a non-linear task. The spatial pooling is carried

ut by four max-pooling layers, which follow some of the convo-

utional layers in each stage (not all the convolutional layers are

ollowed by plane size reduction operation, respectively conv1_2,

onv2_2, conv3_3 and conv4_3). The plane size reduction opera-

ion is achieved by a stride 2 block: a Max-pooling with 2 × 2 pixel

lter. It is used to achieve translation invariance over small spa-

ial shifts in the image, which can also reduce the parameter size

f the networks. The side-output features are obtained by a con-

olutional layer with a kernel size 1 and a number of output N .

xcept the first side-output layer, other four side-output layers are

ollowed by deconvolutional layers, which are applied to upsample

he plane size of the feature maps to be the same as the input im-

ge. Then, the upsampled feature maps are concatenated to form

nal features, which are followed by a convolutional layer and a

oftmax layer. The output of the softmax layer is a N -channel map

f the probabilities where N is the number of classes (N = 2 in our

pplication). According to the prediction of the softmax layer, we

an get a predicted label for each pixel by a fixed threshold.

For a same input image, there is a fact that most predictions of

ower convolutional stages preserve well the crack region bound-

ries but are sensitive to local noise, such as dark spots and dirt.

n the contrary, predictions of deeper convolutional stages show

etter anti-noise abilities but fail in preserving the segmentation

oundaries. Therefore, it is a trade-off strategy to linearly fuse

he predictions of different convolutional stages. We explore fur-

her and first propose a novel method to refine the fused predic-

ion by applying Guided Filtering [39] , named as guided feathering .

irst, a binary mask is generated by the fused prediction. Then, the

ide-output of conv1_2 is set as a guidance map. The guided filter

chieves the final refined prediction by well preserving the crack

egions and removing the noises in the low level prediction. Com-

aring to the CRF method, such technique is faster and more effi-

ient.

Our architecture consists of main three parts: (1) the convolu-

ional layers which correspond to the first 13 convolutional layers

n the VGG-16 net [41] ; (2) the side-output layers; (3) the refine-

ent module.

Fig. 2 shows the main architecture of our proposed model, in

hich the details on each operations are presented. There are

ome differences with the VGG-16 networks: (1) we insert batch

ormalization (BN) layer [42] between the convolutional layer and

eLU layer [43] , which is applied to improve model generalization;

2) the pool5 layer and fully connected layers are discarded. Hence,

t is a fully convolutional network.

The side-output features are obtained by a convolutional layer

ith a kernel size 1 and a number of output N (N = 2). It can be
reated as a linear fusion method and outputs a prediction map.

iven the differences of receptive field size, deeper predictions

re less affected by noises while lower ones present more de-

ailed boundaries. The final fused result is a trade-off of these side-

utput predictions, as showed in Fig. 2 .

We apply two methods to refine the fused prediction: Condi-

ional Random Field (CRF) and Guided Filtering (GF) [39] . Here,

he CRF-based methods is similar to CRF-RNN [10] . Fig. 3 presents

he guided filtering process, in which the predictions of fused and

ide-output 1 are input p and guidance I , respectively. The param-

ters are r = 5 , ε = 1 e − 6 for the guided filter.

Our method has several advantages: (1) applying the whole im-

ge to train and generate pixel-wise predictions in an end-to-end

anner, which is easy-to-use in practice; (2) the hierarchical fea-

ure learning in a network, which has been proved beneficial in

ome computer tasks [11,33,44] ; (3) refining the fused predictions

ith an efficient guided filtering; (4) the computation efficiency

ue to discarding the fully connected layers (reducing the param-

ters of VGG-16 nets significantly from 134M to 14.7M).

.2. Loss formulation

Most of the notations and formulations of the proposed

ethod follow those of HED [3] , but with some differences.

or crack segmentation, we define the training set by S =
 (I n , G n) , n = 1 , . . . , N} , where the image sample I n = { I (n)

j
, j =

 , . . . , | I n |} denotes the original input image and G n = { G

(n)
j

, j =
 , . . . , | G n |} , Y (n)

j
∈ { 0 , 1 } . For simplicity, we consider each image in-

ependently and the index i will be omitted hereafter. Each side-

utput layer during the training stage, as showed in Fig. 4 , will

e evaluated respectively. The goal of the training is to learn a

odel that minimizes the differences between the final prediction

f the network and the ground truth. To learn meaningful features

or crack segmentation, we apply DSN [38] to supervise each side-

utput layer. Each side-output layer can be treated as a pixel-wise

lassifier with the corresponding weights w = { (w

(1) , . . . , w

(M)) } ,
here M is the number of side-output layers. We denote all the

arameters of the network as W , and then the loss function is for-

ulated as

 side (I , G , W , w) =

M ∑

m =1

αm

� side (I , G , W , w

(m))

=

M ∑

m =1

αm

�(P

(m)
, G , W , w

(m)) , (1)

here � side refers to the image-level loss function for side-output,

 = { P j , j = 1 , . . . , | I |} , P j ∈ { 0 , 1 } refers to the predicted results of

142 Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153

Fig. 2. The details of our convolutional network.

Fig. 3. The illumination of guided filtering refinement module.

t

w

a

s

n

a

L

e

G

c

r

w

s

j

t

T
the m -th side-output layer, which is upsampled to the raw image

size when necessary, αm

is a hyper-parameter denoted as the loss

weight for each side-output layer. In our image-to-image training,
he modified cross-entropy function � is defined as

� = −
∑

j∈ G +
w 0 log Pr (P j = 1 | I , W , w)

−
∑

j∈ G −
w 1 log Pr (P j = 0 | I , W , w) ,

(2)

here we denote | G | , | G + | , | G −| as the total number of all pixels,

ll positive pixels and all negative pixels for an input image I , re-

pectively. w 0 and w 1 are the class loss weights for corresponding

on-crack and crack pixels, respectively. Pr(·) refers to the prob-

bility of positive or negative for a pixel in the predicted map.

et C 0 and C 1 be the total numbers of non-crack (negative) pix-

ls and crack (positive) ones in the total training set, respectively.

iven that over 95% of the ground truth are non-crack, the simple

ross-entropy loss can cause training difficulties due to the satu-

ation behavior of the activation function. Therefore, we need to

eight the loss differently which termed class balancing [12] . We

et w 0 = 1 . 0 (when pixel j is a negative) and w 1 =

C 0
C 1

(when pixel

 is a positive) to achieve such goal.

Each the side-output layer can be applied to generate a predic-

ion map, which contributes to the corresponding side-output loss.

he side-output layers are concatenated to a final fused prediction

Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153 143

Fig. 4. An illustration of side-output predictions. The predictions consist of “side-output m ” (m = 1 , . . . , 5) . Each side-output can produce the loss termed as

αm �(P (m)
, G , W , w

(m)) . The final fused prediction “Fused” also produces the loss termed as L fuse .

Fig. 5. Some representative samples in our benchmark database. The images were obtained by main two ways: (1) we downloaded from the Internet; (2) we took some

photos of the real cracks personally.

144 Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153

Fig. 6. Statistics of textures and scenes distribution of our database.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

[F=.548]AutoCrack
[F=.361]RoadCNNs
[F=.639]HED
[F=.762]SegNet
[F=.796]DeepCrack−Basic
[F=.851]DeepCrack−BN
[F=.857]DeepCrack−CRF
[F=.859]DeepCrack−GF
[F=.863]DeepCrack−CRF−GF
[F=.865]DeepCrack−Aug
[F=.808]Side−output 1
[F=.829]Side−output 2
[F=.838]Side−output 3
[F=.809]Side−output 4
[F=.770]Side−output 5

Fig. 7. The Precision-Recall (PR) curve for crack segmentation on our database.

2

C

o

S

m

i

t

f

m
which produces the fused loss termed L fuse as

L fuse (I , G , W) = −
∑

j∈ G +
w 0 log Pr (P j = 1 | I , W)

−
∑

j∈ G −
w 1 log Pr (P j = 0 | I , W) ,

(3)

where I , G , w 0 and w 1 denote the same meanings with those in

Eq. (2) . Therefore, our overall loss function becomes
L = L side (I , G , W , w) + L fuse (I , G , W) . (4)
.3. Model parameters

We trained our network using the publicly available

affe [45] library and built it on top of the implementations

f FCN [9] , DSN [38] , HED [3] and SegNet [12] . We used the

tochastic Gradient Descent (SGD) [46] method to optimize our

odel. The model parameters we tuned are: the size of input

mage (544 × 384 × 3), the size of ground truth (544 × 384 × 1),

he size of mini-batch (1), the learning rate (1e −4), the loss weight

or each side-output layer and the final fused layer (1.0), the mo-

entum (0.9), the weight decay (2e-4), and the training iterations

Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153 145

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

[auc=.965]HED
[auc=.893]SegNet
[auc=.963]DeepCrack−Basic
[auc=.993]DeepCrack−BN
[auc=.990]DeepCrack−CRF
[auc=.981]DeepCrack−GF
[auc=.989]DeepCrack−CRF−GF
[auc=.995]DeepCrack−Aug

0 0.05 0.1
0.7

0.8

0.9

1

Fig. 8. The ROC curve for crack segmentation on our database. Our methods DeepCrack-Aug achieves the best AUC score.

(

w

o

2

d

(

r

W

d

p

W

t

a

X

t

3

3

u

Table 1

The percentages of crack pixels and non-crack ones.

Crack pixels (%) Non-crack pixels (%)

Training 2.91 97.09

Test 4.33 95.67

Total 3.54 96.46

o

d

t

i

d

t

s

s

i

s

m

t

a

o

r

c

t

m

F

t

c

c

s

c

A

1 Available at: https://github.com/yhlleo/DeepCrack.
2e5; reduce learning rate by 1/5 after 5e4). In later experiments,

e fixed the values of all parameters discussed above.

Significantly, our proposed network are efficiently trained with-

ut utilizing any pre-trained models for main two reasons:

1. Our task aims to distinguish only two classes (i.e., crack and

non-crack), which is easier than general semantic segmenta-

tion issues (e.g., 21 classes for PASCAL VOC [47]). In addition,

there are great differences about the semantic categories be-

tween PASCAL VOC dataset and our crack detection dataset,

which lead to a result that initializing the proposed network

with the pre-trained models makes few effects.

2. The usage of batch normalization, side output supervision and

elaborate loss function improve the convergence and accuracy

of the proposed network.

.4. Data augmentation

Data augmentation has been proven to be a crucial technique in

eep networks [3,4] . We rotated the images to 8 different angles

every 45 ° in [0 °, 360 °)) and cropped the largest rectangle in the

otated image (without the blank regions produced by rotation).

e also flipped the images at each angle horizontally. Hence, the

ataset were augmented by 16 times. In the training stage, we ap-

lied both the raw images and augmented ones to train networks.

e resize the input images at 256 × 256 because of the rotation

ransformation, which is different from the training without data

ugmentation.

All models were trained and tested on a single NVIDIA TITAN

. For a 544 × 384 input image, inference time is about 0.1 s. So,

esting is efficient.

. Experiments

.1. Benchmark

In previous studies, every method build a specific small eval-

ation dataset to verify its effectiveness. It makes the comparison
f different methods very difficult. Hence, a good crack detection

ataset will deal with this problem well. Therefore, we have es-

ablished an open benchmark database 1 that can provide empir-

cal basis for research on crack detection and segmentation. The

ataset is consist of 537 RGB color images with manually anno-

ated segmentations. Some representative images and their corre-

ponding segmentations are shown in Fig. 5 , respectively. All of the

egmentations were issued by presenting the subject with a binary

mage. The images were divided into two main subsets: a training

et with 300 images and a testing set with 237 ones. Each image is

ade available to a pixel-wise segmentation map, which presents

o be a mask exactly covering the crack regions. All of the images

re of a fixed size of 544 × 384 pixels.

Table 1 displays the percentages of crack pixels and non-crack

nes of the database, which accords with the fact that the crack

egions only occupy a small proportion of the images. We chose

rack images in various scenes and scales to universally represent

he characteristics of cracks. Fig. 6 shows the statistics for the se-

antic annotation of the major textures and scenes distribution.

or the bare type, it presents as a clean and smooth texture of

he background. Therefore, there is a remarkable contrast between

rack and non-crack regions. For the rough type, it presents as a

ratered or rough surface. For the dirty type, there are plenty of

pots and stains distributing in the image. The contrast between

rack and non-crack regions is lower for the latter two types.

sphalt and concrete, which are commonly used in man-made

146 Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153

Fig. 9. Results on several samples with thin cracks of our Crack Detection Database. In each column we present (a) original images, (b) ground truth, (c) AutoCrack [22] ,

(d) RoadCNNs [37] , (e) HED [3] , (f) SegNet [12] , respectively.

i

p

c

a

t

p

convolutional neural networks.
buildings, are two major scenes of the database. The width of

cracks is in ranges from 1 pixel to 180 ones in the database. So,

multiple textures, scenes and scales make the crack segmentation

a challenging task on our built database.

There is another public benchmark database for asphalt pave-

ment crack detection [48] . The benchmark 2 contains a few anno-

tated images(less than 40) and is specially designed for thin cracks
2 Dataset: http://perso.lcpc.fr/sylvie.chambon/FISSURES/Datasets.html .
n 2–5 pixels wide. We realized that the thin cracks with several

ixels width and dashed-line shape are different from the wider

rack regions. Post-processing, such as length constraint, curvature

nd geometric features etc., which are broadly applied in tradi-

ional methods [22,48] , is requisite to obtain continuous and com-

lete thin crack segments. However, it is the weakness of deep

http://perso.lcpc.fr/sylvie.chambon/FISSURES/Datasets.html

Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153 147

Fig. 10. Results on several samples with thin cracks of our Crack Detection Database. In each column we present (a) original images, (b) ground truth, (g) DeepCrack-Basic,

(h) DeepCrack-BN, (i) DeepCrack-CRF, (j) DeepCrack-GF, (k) DeepCrack-CRF-GF and (l) DeepCrack-Aug, respectively.

148 Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153

Fig. 11. An illustration of the different predictions. The first row images are original image (a), fused prediction (b), CRF refined result (c), and guided filtering refined result

(d), respectively. The second row are plotting maps of the pixel value along the color lines. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 12. The probability maps generated by DeepCrack-CRF: (a) the test sample; (b) ground truth, (c) CRF refined result, (d) linear fusion map with (e)–(i) (side-output 1–5),

respectively. It implies that learned features are distinct in each stage. More detailed local features are retained in the lower level layers. Meanwhile more abstract features

are represented in the deeper layers. The fused result and refined prediction show better performances.

Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153 149

Fig. 13. Several samples with cracks in various scenes. The columns are: (a) original image, (b) ground truth, (c) HED [3] , (d) SegNet [12] , (e) DeepCrack-Basic, (f) DeepCrack-

BN, (g) DeepCrack-CRF, and (h) DeepCrack-GF.

150 Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153

Fig. 14. We apply the DeepCrack-BN to extract reliable hypothesis crack regions on the dataset [48] . Predictions of DeepCrack-BN with darker pixels are more likely to be

crack pixels. Inference time is about 0.3 s for the test samples with the size of 512 × 768 pixels.

(

(

(

(

(

(

(

(

(

w

w

D

a

b

v

o

(

s

s

s

w

a

t

t

t

(

H

o

F

c

t

w

w

d

r

w

m

c

t

a

g

d

i

t

D

s

t

w

c

m

t

m

C
3.2. Metrics

We performed the major experiments on our established

benchmark database. To evaluate our work, we introduce three

metrics of common semantic segmentation evaluations [9,12] . Let

n ij be the number of pixels of the class i predicted to be the class

j , where there are n cls different classes, and t i =

∑

j n i j be the to-

tal number of pixels of the class i (both true positives and false

positives are included). Then, we compute:

1) Global accuracy (G), which measures the percentage of the pix-

els correctly predicted: �i n ii / �i t i ,

2) Class average accuracy (C), which means the predictive accuracy

over all classes: (1/ n cls) �i n ii / t i ,

3) Mean intersection over union (I/U) over all classes:

(1 /n cls)
∑

i n ii / (t i +

∑

j n ji − n ii) .

In addition to evaluate the semantic segmentation, three com-

mon metrics in the crack detection field are computed as

1) Precision (P) =

TruePositives
TruePositives +# FalsePositives

,

2) Recall (R) =

TruePositives
TruePositives +# FalseNegatives

,

3) F-score (F) =

2 PR
R + R .

Given that P-R metrics take no account of # TrueNegatives , we

introduce a classical metric Receiver Operating Characteristic (ROC)

curve. The performances of the mentioned methods in our paper

are calculated the scores, respectively. For the ROC curve, we cal-

culate three metrics:

1) True Positive Rate, TPR =

TruePositives
TruePositives +# FalseNegatives

,

2) False Positive Rate, FPR =

FalsePositives
FalsePositives +# TrueNegatives

,

3) The Area Under the ROC Curve, AUC.

3.3. Evaluation

We trained our networks with six strategies: (1) DeepCrack-

Basic used the HED [3] architecture with our loss function and was

trained with original 300 training images; (2) DeepCrack-BN is the

same as DeepCrack-Basic but adding batch normalization layers be-

fore each activation operation; (3) DeepCrack-CRF is the same as

DeepCrack-BN but adding CRF after the network; (4) DeepCrack-

GF is the same as DeepCrack-BN but applying the refining mod-

ule of guided filtering, as showed in Fig. 1 ; (5) DeepCrack-CRF-GF

linearly combined the prediction of DeepCrack-CRF and DeepCrack-

GF, which was formulated as

P = βP CRF + (1 − β) P GF , (5)
here P refers to the prediction map and β is the balancing

eight which was set as 0.5; (6) DeepCrack-Aug is the same as

eepCrack-BN but trained with the augmented data of 9.6 k im-

ges. DeepCrack-CRF and DeepCrack-Aug networks were fine-tuned

y the trained DeepCrack-BN model. To make the experiments con-

incing, we compared our method with other four typical meth-

ds: (1) AutoCrack [22] , a traditional artificial designed detector;

2) RoadCNNs [37] , a latest CNNs-based classifier for patch clas-

ification; (3) HED [3] , an edge detection network achieving the

tate-of-the-art performances; (4) SegNet [12] , a latest semantic

egmentation network. We fine-tuned the HED and SegNet net-

orks with their original architectures and loss functions on our

ugmented dataset.

We tried to binarize the probability maps with variant global

hresholds. Fig. 7 shows the Precision-Recall curve generated by

he threshold segmentation method. According to it, we can get

he statistics, including inference time (Times), the best thresholds

 T) and the mentioned metrics (Metrics), as showed in Table 2 .

ere, we calculated the G, C and I/U by having the same thresh-

ld as the best F-score value. Several test samples are shown in

igs. 9 and 10 . Compared with the other four methods, our ar-

hitecture shows noticeable improvement of performances. Au-

oCrack shows poor performances, when it encountered wider or

eaker cracks. RoadCNNs is a patch-based classification method

ith CNNs which achieved very rough segmentations. HED was

esigned for edge detection which leads to the facts that the

esults of thin cracks are pretty good but very unfortunate for

ider cracks. This is the main reason HED achieved poor perfor-

ances. Therefore, there are some intrinsic differences between

rack detection and edge detection. Batch normalization, which is

reated as a regularizer, can reduce over-fitting for the network

nd boost performances a lot. Both conditional random fields and

uided image filtering methods can be implemented to refine the

ense predictions, but the latter is more faster and more efficient

n such application. Fig. 11 presents the details on the predic-

ions of DeepCrack-BN, DeepCrack-CRF and DeepCrack-GF, in which

eepCrack-GF achieves the sharpest boundaries. DeepCrack-CRF-GF

hows a slight improvement in mean I/U and F-score, comparing

o DeepCrack-CRF and DeepCrack-GF. DeepCrack-Aug was trained

ith augmented data and achieves the best F-score, which indi-

ates that it is possible to increase the performances further with

ore annotated data. Besides, Table 2 shows that our proposed op-

imization method with both GF and CRF can slightly improve the

odel performances (GF improves about 0.8, CRF improves 0.6, GF-

RF improves 1.2). Compared with only augmenting the training

Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153 151

Fig. 15. We apply the DeepCrack-BN to extract reliable hypothesis crack regions on the dataset [48] . Predictions of DeepCrack-BN with darker pixels are more likely to be

crack pixels. Inference time is about 0.8 s for the test samples with the size of 480 × 1920 pixels.

Table 2

Comparison of different methods on our testing database.

Methods Times T Metrics

(ms) G C I/U P R F

AutoCrack [22] – – 97.0 70.9 67.3 77.2 42.4 54.8

RoadCNNs [37] – – 86.9 86.5 54.2 22.9 86.0 36.1

HED [3] 56 0.70 95.8 87.7 70.0 59.4 69.1 63.9

SegNet [12] 184 0.91 98.0 82.3 78.5 79.7 72.9 76.2

DeepCrack-Basic 74 0.86 97.8 92.5 80.1 79.4 79.9 79.6

DeepCrack-BN 109 0.87 97.8 96.6 81.3 83.9 86.3 85.1

DeepCrack-CRF 400 + 0.90 98.2 95.4 83.6 86.8 84.6 85.7

DeepCrack-GF 118 0.75 98.6 95.0 85.9 85.2 86.6 85.9

DeepCrack-CRF-GF 400 + 0.80 98.5 95.4 85.4 86.6 85.9 86.3

DeepCrack-Aug 109 0.86 97.5 97.0 80.2 86.1 86.9 86.5

d

r

C

c

t

s

F

l

t

a

l

l

f
ataset 16 times (Aug improves 1.4), its clear that our proposed

efining post-processing methods are effective. Compared GF and

RF, the former method achieves better performances with lower

omputation. In addition, we applied both GF and CRF methods

o refine the results of DeepCrack-Aug, in which we achieved a

light improvement on the performance (P = 0.869, R = 0.864 and

 = 0.867).
I
Table 3 displays the statistics of different level convolutional

ayers, including each side-output and the fused-output. Both two

ypes of metrics present two similar tendencies: (1) all metrics

re increasing gradually from the low level layers to the middle

evel ones first, then it turns into decreasing from the middle level

ayers to the high level ones; (2) both the simplest fusion (linear

usion) and guided filtering refinement improve the performances.

t is logical that the low level layers represent more local features

152 Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153

Table 3

Results of each side-output and fused-output on our testing dataset

in DeepCrack-GF.

Outputs Metrics

G C I/U P R F

Side-output 1 95.9 95.7 73.0 76.7 84.6 80.5

Side-output 2 97.1 95.8 77.7 77.9 87.1 82.3

Side-output 3 97.7 96.2 80.5 75.2 91.0 82.3

Side-output 4 97.1 96.2 77.9 75.1 87.4 80.7

Side-output 5 96.8 95.4 76.4 69.1 86.3 76.7

Fused results 97.8 96.6 81.3 83.9 86.3 85.1

Refined results 98.6 95.0 85.9 85.2 86.6 85.9

The fused results achieve best global accuracy, mean I/U, precision

and F-score.

a

p

s

t

t

g

w

m

p

A

e

K

2

S

R

with a smaller receptive field. More non-crack pixels were pre-

dicted to be crack pixels, termed false positives , and lesser crack

pixels were predicted to be non-crack pixels, termed false nega-

tives , in such low level layers. It indicates that the low level fea-

tures are susceptible to noise, such as spots, stains and other ob-

jects similar to cracks. With the layers becoming deeper, the mean-

ingful local features learned from bigger receptive fields are more

abstract, which is good to decrease false positives but is inferior to

increase false negatives. Therefore, higher level features show more

anti-noise capabilities. Fused hierarchical features can be treated

as neutralization which aggregates the multiple level features from

coarse to fine. Therefore, fused results show better integrated per-

formances. Fig. 12 presents the outputs of different convolutional

stages of a same sample, which verifies our analysis.

The ROC metrics are shown in Fig. 8 . Though there are only

small differences in the ROC curve, all of our DeepCrack networks

achieves the better performances of AUC > 0.98. Compared with

the other two methods (HED [3] and SegNet [12]), our architecture

shows obvious improvements.

Some more test samples in specific scenes, including thin, wide,

with stains and blurring, are respectively evaluated and presented

in Fig. 13 . Our method shows better performances on visual effects

in these experiments.

As previously mentioned, post-processing, such as length con-

straint, curvature and geometric features etc., which are broadly

applied in traditional methods [22,48] , is requisite to obtain

continuous and complete thin crack segments. However, it is

the weakness of deep convolutional neural networks. We ran-

domly choose half annotated images from [48] to fine-tuning our

trained model DeepCrack-BN and obtain the predictions shown

in Figs. 14 and 15 . The results demonstrate that our CNNs-based

methods can provide the reliable hypothesis for thin cracks with

several pixels width and dashed-line shape.

4. Conclusion

Crack detection is a viable research. Unlike other detection

tasks, segmenting the refined crack regions in pixel-wise is better

than predicting bounding-boxes in practice. Our work makes con-

tributions to propose a CNN-based learning method for semantic

segmentation and establish a challenging benchmark dataset with

multi-scene and multi-scale cracks.

We present a deep hierarchical features learning architecture,

named DeepCrack, for crack segmentation, which is inspired by

an edge detection network [3] . We keep the DSN module to pro-

vide integrated direct supervision for multi-level features learning,

apply batch normalization [42] to reduce internal covariate shift,

and modify the cross-entropy loss function for our application, and

attempt to refine the predictions, such as conditional random fields

and guided filtering. The guided filtering method is faster and

more efficient than the conditional random fields. We established
n open crack detection dataset to evaluate our method and com-

ared with the up-to-date methods. Experimental results demon-

trate that our method has achieved comparable performance with

he state-of-the-art methods.

In the future, we will plan to exploit a better strategy to merge

he features of side-output layers. More images of false crack re-

ions will be added to the current benchmark database, which

ill make the database more comprehensive. Some more detailed

etrics, such as accuracies on specific scenes and scales, will be

roposed.

cknowledgments

This work was partially supported by the National Natural Sci-

nce Foundation of China (Project No. 41571436), the National

ey Research and Development Program of China (Project No.

017YFB1302400), and the Hubei Province Science and Technology

upport Program, China (Project No. 2015BAA027).

eferences

[1] Q. Li , Q. Zou , D. Zhang , Q. Mao , FoSA: F ∗ seed-growing approach for crack-line

detection from pavement images, Image Vis. Comput. 29 (12) (2011) 861–872 .

[2] D.H. Hubel , T.N. Wiesel , Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex, J. Physiol. 160 (1) (1962) 106–154 .

[3] S. Xie , Z. Tu , Holistically-nested edge detection, in: Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 1395–1403 .

[4] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-
volutional neural networks, in: Proceedings of the Advances in Neural Infor-

mation Processing Systems (NIPS), 2012, pp. 1097–1105 .
[5] R. Girshick , J. Donahue , T. Darrell , J. Malik , Rich feature hierarchies for ac-

curate object detection and semantic segmentation, in: Proceedings of the

IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2014,
pp. 580–587 .

[6] R. Girshick , Fast R-CNN, in: Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 1440–1448 .

[7] S. Ren , K. He , R. Girshick , J. Sun , Faster R-CNN: towards real-time object detec-
tion with region proposal networks, in: Proceedings of the Advances in Neural

Information Processing Systems (NIPS), 2015, pp. 91–99 .

[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Semantic im-
age segmentation with deep convolutional nets and fully connected CRFs, IEEE

Transactions on Pattern Analysis and Machine Intelligence 40 (2017) 834–848.
[9] J. Long , E. Shelhamer , T. Darrell , Fully convolutional networks for semantic seg-

mentation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 3431–3440 .

[10] S. Zheng , S. Jayasumana , B. Romera-Paredes , V. Vineet , Z. Su , D. Du , C. Huang ,

P.H. Torr , Conditional random fields as recurrent neural networks, in: Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV), 2015,

pp. 1529–1537 .
[11] D. Eigen , R. Fergus , Predicting depth, surface normals and semantic labels with

a common multi-scale convolutional architecture, in: Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 2650–2658 .

[12] V. Badrinarayanan, A. Handa, R. Cipolla, Segnet: A deep convolutional encoder-

decoder architecture for image segmentation, IEEE Transactions on Pattern
Analysis and Machine Intelligence 39 (2017) 2481–2495.

[13] H. Oh , N.W. Garrick , L.E. Achenie , Segmentation algorithm using iterative clip-
ping for processing noisy pavement images, in: Proceedings of the Interna-

tional Conference Imaging Technologies: Techniques and Applications in Civil
Engineering, 1998 .

[14] Q. Li , X. Liu , Novel approach to pavement image segmentation based on neigh-

boring difference histogram method, in: Proceedings of the IEEE Congress on
Image and Signal Processing, 2, 2008, pp. 792–796 .

[15] J. Zhou , P.S. Huang , F.-P. Chiang , Wavelet-based pavement distress detection
and evaluation, Opt. Eng. 45 (2) (2006) . 027007–027007.

[16] S. Wu , Y. Liu , A segment algorithm for crack dection, in: Proceedings of the
IEEE Symposium on Electrical & Electronics Engineering, 2012, pp. 674–677 .

[17] Q. Zou , Y. Cao , Q. Li , Q. Mao , S. Wang , CrackTree: automatic crack detection

from pavement images, Pattern Recognit. Lett. 33 (3) (2012) 227–238 .
[18] F. Roli , Measure of texture anisotropy for crack detection on textured surfaces,

Electron. Lett. 32 (14) (1996) 1274–1275 .
[19] T.S. Nguyen , S. Begot , F. Duculty , M. Avila , Free-form anisotropy: a new method

for crack detection on pavement surface images, in: Proceedings of the IEEE
International Conference on Image Processing (ICIP), 2011 .

[20] W. Xu , Z. Tang , J. Zhou , J. Ding , Pavement crack detection based on saliency
and statistical features, in: Proceedings of the IEEE International Conference

on Image Processing (ICIP), 2013 .

[21] Y. Hu , C.-x. Zhao , A local binary pattern based methods for pavement crack
detection, J. Pattern Recognit. Res. 5 (1) (2010) 140–147 .

[22] W. Zhang , Z. Zhang , D. Qi , Y. Liu , Automatic crack detection and classifi-
cation method for subway tunnel safety monitoring, Sensors 14 (10) (2014)

19307–19328 .

http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0020

Y. Liu, J. Yao and X. Lu et al. / Neurocomputing 338 (2019) 139–153 153

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

o

t

W

i

H

c

m

p

23] D. Zhang , Q. Li , Y. Chen , M. Cao , L. He , B. Zhang , An efficient and reliable
coarse-to-fine approach for asphalt pavement crack detection, Image Vis. Com-

put. 57 (2017) 130–146 .
[24] C. Farabet, C. Couprie, L. Najman, Y. LeCun, Learning hierarchical features for

scene labeling, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 35 (8) (2013)
1915–1929.

25] C. Couprie, C. Farabet, L. Najman, Y. LeCun, Indoor semantic segmentation us-
ing depth information, International Conference on Learning Representations

(ICLR) (2013).

26] G. Papandreou, L.-C. Chen, K. Murphy, A.L. Yuille, Weakly-and semi-supervised
learning of a DCNN for semantic image segmentation, Proceedings of the 2015

IEEE International Conference on Computer Vision (ICCV) (2015) 1742–1750.
[27] M. Everingham , S.A. Eslami , L. Van Gool , C.K. Williams , J. Winn , A. Zisserman ,

The pascal visual object classes challenge: a retrospective, Int. J. Comput. Vis.
(IJCV) 111 (1) (2015) 98–136 .

28] A.G. Schwing, R. Urtasun, Fully connected deep structured networks, CoRR,

arXiv: 1503.02351 (2015).
29] G. Lin, C. Shen, I. Reid, et al., Efficient piecewise training of deep structured

models for semantic segmentation, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016).

30] H. Noh , S. Hong , B. Han , Learning deconvolution network for semantic seg-
mentation, in: Proceedings of the IEEE International Conference on Computer

Vision (ICCV), 2015, pp. 1520–1528 .

[31] S. Hong , H. Noh , B. Han , Decoupled deep neural network for semi-supervised
semantic segmentation, in: Proceedings of the Advances in Neural Information

Processing Systems (NIPS), 2015, pp. 1495–1503 .
32] W. Liu, A. Rabinovich, A.C. Berg, Parsenet: looking wider to see better, Interna-

tional Conference on Learning Representations (ICLR) Workshop (2016).
[33] B. Hariharan , P. Arbeláez , R. Girshick , J. Malik , Hypercolumns for object seg-

mentation and fine-grained localization, in: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 447–456 .
34] T. Kong, A. Yao, Y. Chen, F. Sun, Hypernet: towards accurate region proposal

generation and joint object detection, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016).

[35] D. Soukup , R. Huber-Mörk , Convolutional neural networks for steel surface de-
fect detection from photometric stereo images, in: Proceedings of the Interna-

tional Symposium on Visual Computing, 2014, pp. 668–677 .

36] X. Gibert, V.M. Patel, R. Chellappa, Deep multi-task learning for railway track
inspection, IEEE Transactions on Intelligent Transportation Systems 18 (2016)

153–164.
[37] L. Zhang , F. Yang , Y.D. Zhang , Y.J. Zhu , Road crack detection using deep convo-

lutional neural network, in: Proceedings of the IEEE International Conference
on Image Processing (ICIP), 2016, pp. 3708–3712 .

38] C.-Y. Lee , S. Xie , P. Gallagher , Z. Zhang , Z. Tu , Deeply-supervised nets, in: Pro-

ceedings of the AISTATS, 2, 2015, p. 6 .
39] K. He , J. Sun , X. Tang , Guided image filtering, IEEE Trans. Pattern Anal. Mach.

Intell. 35 (6) (2013) 1397–1409 .
40] J. Yang, B. Price, S. Cohen, H. Lee, M.-H. Yang, Object contour detection with a

fully convolutional encoder-decoder network, Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2016).

[41] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, International Conference on Learning Representations

(ICLR) (2015).

42] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by
reducing internal covariate shift, International Conference on Machine Learn-

ing (ICML) (2015).
43] V. Nair , G.E. Hinton , Rectified linear units improve restricted Boltzmann ma-

chines, in: Proceedings of International Conference on Machine Learning
(ICML), 2010, pp. 807–814 .

44] K. He , X. Zhang , S. Ren , J. Sun , Spatial pyramid pooling in deep convolutional

networks for visual recognition, in: Proceedings of the European Conference
on Computer Vision (ECCV), 2014, pp. 346–361 .

45] Y. Jia , E. Shelhamer , J. Donahue , S. Karayev , J. Long , R. Girshick , S. Guadarrama ,
T. Darrell , Caffe: convolutional architecture for fast feature embedding, in:

Proceedings of the 22nd ACM International Conference on Multimedia, 2014,
pp. 675–678 .

46] L. Bottou , Large-scale machine learning with stochastic gradient descent, in:

Proceedings of COMPSTAT, 2010, pp. 177–186 .
[47] M. Everingham , L. Van Gool , C.K. Williams , J. Winn , A. Zisserman , The pas-

cal visual object classes (VOC) challenge, Int. J. Comput. Vis. 88 (2) (2010)
303–338 .

48] S. Chambon , J.-M. Moliard , Automatic road pavement assessment with image
processing: review and comparison, Int. J. Geophys. 2011 (2011) 1–20 .
Yahui Liu received the B.E. degree and M.E. degree from

the School of Remote Sensing and Information Engineer-
ing at Wuhan University, China in 2015 and 2018, respec-

tively. Now, he is pursuing a Ph.D. degree at University of

Trento and FBK, Trento, Italy. He is the author of several
international conference papers. Currently, his research

focuses on include image segmentation, image generation
and deep learning.

Jian Yao received the B.Sc. degree in Automation in 1997

from Xiamen University, China, the M.Sc. degree in Com-
puter Science from Wuhan University, China, and the

Ph.D. degree in Electronic Engineering in 2006 from The
Chinese University of Hong Kong. From 2001 to 2002,

he has ever worked as a Research Assistant at Shenzhen

R&D Centre of City University of Hong Kong. From 2006
to 2008, he worked as a Postdoctoral Fellow in Com-

puter Vision Group of IDIAP Research Institute, Martigny,
Switzerland. From 2009 to 2011, he worked as a Research

Grantholder in the Institute for the Protection and Secu-
rity of the Citizen, European Commission Joint Research

Centre (JRC), Ispra, Italy. From 2011 to 2012, he worked as
 Professor in Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy

f Sciences, China. Since April 2012, he has been a Hubei “Chutian Scholar” Dis-

inguished Professor with School of Remote Sensing and Information Engineering,
uhan University, China, and the director of Computer Vision and Remote Sens-

ng (CVRS) Lab (CVRS Website: http://cvrs.whu.edu.cn/), Wuhan University, China.
e has published over 90 papers in international journals and proceedings of major

onferences and is the inventor of over 20 patents. His current research interests
ainly include computer vision, image processing, machine learning, LiDAR data

rocessing, robotics, etc.

Xiaohu Lu received the B.E. degree and M.E. degree from
the School of Remote Sensing and Information Engineer-

ing at Wuhan University, China in 2014 and 2017, re-
spectively. He is currently pursuing the Ph.D. degree with

the Department of Civil, Environmental and Geodetic En-
gineering, Ohio State University, Columbus, USA. His re-

search interests include image processing, LiDAR data

processing, vanish point detection, and edge detection.

Renping Xie received the B.E. degree from Shanxi Univer-

sity of Finance & Economics in June 2012. He is a suc-

cessive postgraduate and doctoral program graduate stu-
dent majoring in Photogrammetry and Remote Sensing in

Wuhan University. He has published several international
conference papers and journal papers, and is the inventor

of several patents. His current research interests include
SLAM (simultaneous localization and mapping), Robotics,

Image Processing, etc.

Li Li received the B.E. degree and M.E. degree from the
School of Remote Sensing and Information Engineering

at Wuhan University, China in 2013 and 2016, respec-
tively. He is pursuing a Ph.D. degree at School of Remote

Sensing and Information Engineering, Wuhan University,

China. He has published several international conference
papers and journal ones, and he is the inventor of several

patents. Currently he mainly works on Image Mosaicking,
LiDAR Data Processing, Robotics, Machine Learning, etc.

http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0022
http://arxiv.org/abs/1503.02351
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30056-6/sbref0035
http://cvrs.whu.edu.cn/

	DeepCrack: A deep hierarchical feature learning architecture for crack segmentation
	1 Introduction
	2 Proposed method
	2.1 Model architecture
	2.2 Loss formulation
	2.3 Model parameters
	2.4 Data augmentation

	3 Experiments
	3.1 Benchmark
	3.2 Metrics
	3.3 Evaluation

	4 Conclusion
	Acknowledgments
	References

