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Abstract

This paper presents a very simple and efficient algorithm
to estimate 1, 2 or 3 orthogonal vanishing point(s) on a cal-
ibrated image in Manhattan world. Unlike the traditional
methods which apply 1, 3, 4, or 6 line(s) to generate van-
ishing point hypotheses, we propose to use 2 lines to get
the first vanishing pointv1, then uniformly take sample of
the second vanishing pointv2 on the great circle ofv1 on
the equivalent sphere, and finally calculate the third vanish-
ing pointv3 by the cross-product ofv1 andv2. There are
three advantages of the proposed method over traditional
multi-line method. First, the 2-line model is much more ro-
bust and reliable than the multi-line method, which can be
applied in the scene with 1, 2 or 3 orthogonal vanishing
point(s). Second, the probability of the 2-line model being
formed of inner line segments can be calculated given the
outlier ratio, which means that the number of iterations can
be determined, and thus the estimation of vanishing points
can be performed in a very simple exhaustive way instead of
the traditional RANSAC method. Third, the real-time per-
formance is achieved by building a polar grid for the line
intersection points, which functions as a lookup table for
the validation of vanishing point hypotheses. Our algorithm
has been validated successfully in the YUD dataset and sets
of challenging real images.

1. Introduction

In this paper, we investigate the problem of vanishing
point estimation on a calibrated image in Manhattan world.
The orthogonal vanishing points provide the informations
of the camera orientation, the world structure and the inter-
nal parameters of the image, thus it can be used in many
applications like single view reconstruction [6], camera self
calibration [4], visual navigation [8, 2], and so on. Estima-

(a) original image (b) 1 vanishing point

(c) 2 vanishing points (d) 3 vanishing points
Figure 1. An illustration of vanishing point estimation results of
the proposed method in the cases of 1 vanishing point (b), 2 van-
ishing points (c) and 3 vanishing points (d). The proposed method
can estimate 1, 2 or 3 orthogonal vanishing point(s) on a calibrated
image in Manhattan world.

tion of vanishing points in the Manhattan world is a tough
task because there are two conditions that should be taken
into consideration: (1) the global constraint, which means
that the solution should be global optimal; (2) the orthogo-
nal constraint, which means that the vanishing points should
be orthogonal to each other. In the past decades, many al-
gorithms have been proposed to deal with these problems
in various view points. In general, these algorithms can be
divided into four categories: the exhaustive searching based
ones, the expectation-maximization (EM) based ones, the
RANSAC based ones, and the optimization based ones.

The exhaustive searching based methods [10, 13] come
at the earliest, because they are quite straightforward to take
exhaustive samples of the vanishing points and then vali-
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date the hypotheses one by one to get the best estimation
result. In the work of [13], the equivalent sphere is divided
into small accumulator cells and each line segment votes for
these cells. Then the cell with the highest vote is chosen as
the first vanishing pointv1, and the pairs ofv2 andv3 are
exhaustively searched in the remaining cells. The pair with
the highest vote is considered as the best estimated vanish-
ing points. However, the computation complexity of the
searching step isO(n5), which means it can not be applied
on some real-time applications. Bazin et al. [2] also used
the exhaustive searching strategy, however their method was
applied on a navigation system and needs the initial estima-
tions of vanishing points which is provided by other sensors.

The expectation-maximization (EM) based methods [1,
5] perform both line segment classification and vanishing
point estimation tasks in an alternative way which finds
the best line segment classification given the current esti-
mated vanishing points in the E-step, and estimates the best
vanishing points based on the line segment classification in
the M-step. The E-step and M-step are performed itera-
tively until convergence. Antone and Teller [1] proposed to
project the line segments onto a cube surface to get straight
lines, then apply the Hough Transform, and finally find and
validate peaks in the HT space via an EM procedure. De-
nis et al. [5] developed an approach to independently esti-
mate the vanishing points via the EM procedure and then re-
orthogonalize them to fit for the Manhattan world assump-
tion. The well-known shortage of these EM based methods
is that they require a precise initial estimation of the van-
ishing points, which however is not available in most cases.
Also, both the global and orthogonal constraints are not well
addressed in these EM based methods.

The RANSAC based methods are the most popular ones,
which usually define a minimal solution set (MSS) for the
estimation of vanishing points and then apply the RANSAC
procedure to generate the vanishing point hypotheses itera-
tively and choose the best one as the final solution. Various
models of the MSS have been proposed including the 1-
line [3], 3-line [3, 19, 11], 4-line [18, 19] and 6-line [12].
In the work of [3], the horizon plane and horizontal van-
ishing point are obtained beforehand, then a 1-line MSS is
randomly selected to generate the second vanishing point,
and the third one can be calculated by the horizontal and
the second vanishing points. In the works of [3, 19, 11],
they all require a 3-line MSS and a RANSAC procedure
to calculate three orthogonal vanishing points, and the only
difference between them lies on the mathematical solution
to the 3-line MSS problem. In the works of [18, 19], a 4-line
MSS was applied to estimate both the vanishing points and
the focal length of the image. Rother [12] applied a 6-line
MSS to form three pairs of line segments corresponding to
three vanishing points. However there is redundancy in this
6-line MSS because a 3-line MSS is just enough to estimate

three vanishing points. Those multi-line MSS can attach
the orthogonal constraint well, and also the RANSAC pro-
cedure can achieve a good balance between the efficiency
and the global constraint. However, most of these multi-line
MSS will fail when there is only one vanishing point on the
image, and also the RANSAC procedure suffers from the
inherent problem of the local minimal solution.

The optimization based methods [7, 16] aim to find a
global optimal solution to the problem of the vanishing
point estimation in mathematics. Ikeuchi et al. [7] proposed
to convert the task of vanishing point estimation into a con-
sensus set maximization problem over the rotation search
space, and then solved it by a branch-and-bound procedure
based on the Interval Analysis theory. While Tretyak et
al. [16] estimated the vanishing points as part of a pars-
ing framework which models the scene as a composition
of geometric primitives spanning different layers from low
level (edges) through mid-level (lines and vanishing points)
to high level (the zenith and the horizon). However, both of
these two methods took more than ten seconds to obtain the
best solution, which limits their applications on real-time
tasks.

There are also some algorithms which solve this prob-
lem in other views, for example, Tardif [14] considered the
vanishing point estimation as a pattern recognition problem
and applied the JLinkage [15] to detect multiple vanishing
points. While recently Lezama et al. [9] estimated the Man-
hattan and non-Manhattan vanishing points via point align-
ment in both the straight and twisted dual spaces, and their
approach achieves a very impressive performance.

In this paper, we present an algorithm which takes advan-
tages of both the MSS and the exhaustive searching strat-
egy to satisfy both the global optimal and orthogonal con-
straints. To overcome the shortage of the multi-line MSS,
we develop a 2-line MSS which is suitable for the estima-
tion of 1, 2 or 3 orthogonal vanishing point(s). To obtain the
global optimal estimation result, we apply the exhaustive
searching strategy. To accelerate the time-consuming ex-
haustive searching procedure, we build a polar grid for the
line intersection points and convert the exhaustive search-
ing problem into a lookup issue whose complexity isO(n).
The proposed algorithm is very simple and efficient, which
contains three steps:

• Polar grid building: a polar grid centered on the prin-
ciple point of the image is built to accumulate the re-
sponse of line segments for each grid cell.

• Hypotheses generation: the 2-line MSS is applied to
generate the first vanishing pointv1, which is followed
by a uniformly sampling of the second vanishing point
v2 on the great circle ofv1 on the equivalent sphere,
and finally the third vanishing point can be calculated
by the cross-product ofv1 andv2.



• Hypotheses validation: all the vanishing point hy-
potheses obtained in the second step are validated ex-
haustively via looking up the polar grid build in the
first step, and the one with the greatest line segment
response is chosen as the best estimated vanishing
points.

2. Algorithm

2.1. Polar Grid Building

The polar grid is built by extending the unit vectors on
the equivalent sphere to intersect with the image plane. So
first of all, we have a brief introduction to the equivalent
sphere applied in this work. Then we will show the details
of how to build the polar grid.

Equivalent Sphere: The equivalent sphere is a unit
sphere which centers in the focal point of the camera as
Figure 2 shows. In this work, the equivalent sphere ap-
plies a right-hand coordinate system with theX-axis and
Y -axis coinciding with thex-axis andy-axis of the image,
respectively, and theZ-axis directs from the focal point of
the camera to the principle point of the image. Given the
principle point(x0, y0)

⊤ and the focal lengthf of the im-
age, a pixel(x, y)⊤ on the image can be converted into the
equivalent sphere coordinate system via the following for-
mulation:











X = x− x0,

Y = y − y0,

Z = f.

(1)

For a 3D pointP in the equivalent sphere coordinate
whose coordinates are(X,Y, Z)⊤, the latitude and longi-
tude(φ, λ) of P is calculated as:

{

φ = acos(Z/
√

X2 + Y 2 + Z2),

λ = atan2(X,Y ) + π.
(2)

Polar Grid: Given a pointp on the image plane, we
can obtain its latitude and longitude(φ, λ) on the equiva-
lent sphere via Eqs. (1) and (2). The spans ofφ andλ are
[0, π/2] and[0, 2π], respectively. Thus, the polar gridG can
be built in the following three steps. In the first step, the
polar gridG is zero-initialized with a size of90× 360 with
an accuracy of 1◦, i.e.,G(i, j) = 0 for i = 1, 2, ..., 90 and
j = 1, 2, ..., 360. In the second step, for every pair of line
segmentsl1 andl2 on the image, their intersection pointp

is calculated and then the latitude and longitude(φ, λ) of p
can be obtained according to Eqs. (1) and (2). Then, we
update the corresponding grid cellG(φdeg, λdeg) with the
following accumulation equation:

G(φdeg,λdeg)=G(φdeg,λdeg)+||l1||×||l2||×sin(2θ), (3)

whereφdeg andλdeg stand for the rounds of the degrees
corresponding toφ andλ, respectively, i.e.,φdeg = [φ ×
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Figure 2. Demonstration of the relationship between the image
plane and the equivalent sphere, and the procedure of how to built
the polar grid. Notice that only the hemisphere toward the image
plane is projected onto the image plane.

180/π] andλdeg = [λ × 180/π], ||l|| denotes the length of
a line segmentl, andθ is the small angle betweenl1 andl2.
Eq. (3) is designed to put more weight on the line segment
pairs with longer length and moderate orientation deviation
which means that the angleθ betweenl1 andl2 should be
neither too small (close to 0◦) nor too big (close to 90◦). In
the final step, a3 × 3 Gaussian smoothing filter is applied
on the polar grid to get a more robust accumulation result.
The result of the polar grid building procedure is a90×360
grid which records the responses of line segments to each
grid cell. Once it has been built, the polar grid can then
function as a lookup table, which is very efficient for real-
time applications.

2.2. Hypotheses Generation

The exiting vanishing point estimation methods usually
use multi-line MSS [3, 19, 11, 18] to generate vanish-
ing point hypotheses. As Wildenauer and Allan [18] have
pointed out that the possibility of the multi-line MSS is
generally difficult to be calculated directly without a pri-
ori knowledge of the population size of line segments cor-
responding to each vanishing point. Thus in most cases,
the iteration number of RANSAC is determined empirically.
Unlike those multi-line MSS methods, we propose to use
a 2-line MSS to generate the hypotheses only for the first
vanishing point and then exhaustively sample for the sec-
ond vanishing point and generate the third one via the first
and second vanishing points. Figure 3 is an illustration of
how we generate three orthogonal vanishing points via the



following three steps. First, two line segments are randomly
selected for intersection to generate the first vanishing point
v1. Then, the second vanishing pointv2 is uniformly sam-
pled on the great circle ofv1 in the equivalent sphere. Fi-
nally, the third vanishing pointv3 is calculated by the cross
product ofv1 andv2. In the following parts of this section,
we will introduce the details of these three steps.

The First Vanishing Point: First of all, we will discuss
the probability of the 2-line MSS. Given an image withN
outlier-less line segments in total, the number of line seg-
ments corresponding tov1,v2 andv3 aren1, n2 andn3,
respectively. By randomly selecting two line segments to
form a 2-line MSS, the probabilityP that both these two
line segments correspond to the same vanishing point is:

P = (C2
n1

+ C2
n2

+ C2
n3
)/C2

N

≈ (n2
1 + n2

2 + n2
3)/N

2 ∈ [1/3, 1],
(4)

whereC is the meaning of composition. The probabilityP
gains the minimal value of 1/3 whenn1 = n2 = n3 = N/3.

Then, given a outlier ratio of the line segments as 0.5,
which means that half of the line segments have no corre-
sponding vanishing points, the minimal value ofP becomes
now1/3× 0.52 = 1/12. Under a confidence coefficient of
0.9999, the number of iteration #Its needed to obtain at
least one inner 2-line MSS is:

#Its = log(1− 0.9999)/ log(1− P )

= 105,
(5)

which means that under a outlier ratio of 0.5 and a confi-
dence coefficient of 0.9999, we need 105 iterations to obtain
at least one inner 2-line MSS.

Thus, for the first vanishing pointv1, we iteratively and
randomly select two line segments and calculate their inter-
section point, then we convert the intersection point into an
unit vector on the equivalent sphere according to Eqs. (1)
and (2). In this way, we obtain 105 hypotheses ofv1.

The Second Vanishing Point: Considering the orthog-
onal constraint, given the first vanishing pointv1 =
(X1, Y1, Z1)

⊤, the second vanishing point must lie on the
great circle ofv1 in the equivalent sphere as shown Figure 3.
Thus we uniformly sample 360 hypotheses for the second
vanishing point on this circle with an accuracy of 1◦, which
is performed as follows. First, the longitude span[0, 2π] is
uniformly divided into 360 fractions, each corresponds to
the longitudeλ of a hypothesis ofv2 . Then, for thei-th
hypothesis whose longitude isi×2π/360, its latitudeφ can
be calculated via the following constraint equations:











X2 = sin(φ) × sin(λ)

Y2 = sin(φ) × cos(λ)

Z2 = cos(φ),

(6)
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Figure 3. Procedures of how to generate three orthogonal vanish-
ing points. The first vanishing pointv1 is the intersection point of
two line segments,v2 is uniformly sampled on the great circle of
v1, andv3 is the cross product ofv1 andv2.

and

X1 ×X2 + Y1 × Y2 + Z1 × Z2 = 0. (7)

Finally, with both the values ofφ andλ, the second vanish-
ing pointv2 = (X2, Y2, Z2) can be obtained via Eq. (6).

The Third Vanishing Point: Given the first and the sec-
ond vanishing pointsv1 andv2, the third vanishing point
can be obtained asv3 = v1 × v2.

As a summary, after the procedure of hypotheses gener-
ation, there will be totally105 × 360 = 37800 hypotheses
for three orthogonal vanishing points, which will then be
validated to choose the best ones.

2.3. Hypotheses Validation

The final step of the proposed method is the validation
of the vanishing point hypotheses. The aim of this pro-
cedure is to find out the one with the greatest line seg-
ments response among all the 37800 hypotheses. Calcu-
lating the line segments response for each hypothesis is
time-consuming, however, the polar grid introduced in Sec-
tion 2.1 can convert this problem into a lookup issue whose
complexity is O(n). The hypotheses validation is per-
formed as follows. For each hypothesis, we calculate the
longitudes and latitudes(λ1, φ1), (λ2, φ2) and(λ3, φ3) via
Eq. (2) forv1, v2 andv3, respectively. Then we search for
the polar grid, and setG([φ1 ×

180
π
], [λ1 ×

180
π
]) + G([φ2 ×

180
π
], [λ2×

180
π
])+G([φ3×

180
π
], [λ3×

180
π
]) as the line seg-

ments response of this hypothesis. Finally, the one with the
greatest response is chosen as the best estimated vanishing
points.



2.4. Discussion

The proposed vanishing point estimation method has the
following properties: robust, real-time and global optimal.

Robust: The applied 2-line MSS needs only two line
segments corresponding to the same vanishing point, which
makes the proposed method robust to different scenes with
1, 2 or 3 orthogonal vanishing point(s).

Real-time: The most time-consuming procedure of hy-
potheses validation is converted into a lookup issue on the
polar grid, whose complexity isO(n), wheren = 37800
is constant for all the cases. And the time consumption for
both polar grid building and hypotheses generation is also
very low. Thus the proposed method can achieve a real-
time performance of around 40ms on a computer with Intel
Core i5-3550p CPU without any optimization and parallel
computation. What should be noticed is that, all the three
procedures: polar grid building, hypotheses generation and
hypotheses validation are parallel inherently, thus they can
be accelerated very easily.

Global Optimal: It is very important for a vanish-
ing point estimation algorithm to be global optimal. The
RANSAC based methods generally suffer from the inher-
ent problem of the local minima solution. The proposed
method, however, can achieve a global optimal solution be-
cause the exhaustive strategy is applied. The probability of
the 2-line MSS is stable, which is in [1/3,1], thus the itera-
tive generation of the first vanishing point is reliable. Then
the uniform and dense sampling of the second vanishing
point with 1◦ accuracy makes the hypotheses generated ad-
equate to contain at least one hypothesis with 1◦ close to
the ground truth vanishing points. Finally, the exhaustive
searching of all the 37800 hypotheses gives a global opti-
mal solution to the vanishing point estimation problem.

3. Experimental Results

We have tested the proposed algorithm1 on the York
Urban Database (YUD) [5]2 which contains 102 calibrated
images with labelled line segments and ground truth van-
ishing points. Each image contains at least 2 orthogonal
vanishing points.

3.1. Measurement

For each ground truth line segment clusterLGT corre-
sponding to a vanishing point, we traverse each test line
segment clusterLtest obtained by a certain algorithm to find
the one which satisfies the following conditions:

{

size(LGT ∩ Ltest) > size(LGT)/2,

size(LGT ∩ Ltest) > size(Ltest)/2,
(8)

1https://github.com/xiaohulugo/VanishingPointDetecti on
2http://www.elderlab.yorku.ca/YorkUrbanDB/

wheresize(•) denotes the size of a set. Eq. (8) makes sure
that each ground truth line segment cluster can find only one
maximal consistent test line segment cluster. The accuracy
of the test algorithm is calculated as

∑3

k=1 Nk/Nall, where
Nk stands for the number of the consistent line segments of
vanishing pointvk, andNall is the number of all the line
segments.

3.2. Influence of Internal Parameters

The proposed algorithm requires no parameters tuning,
since the internal parameters, including the outlier ratio
(0.5), the confidence coefficient (0.9999), the sampling an-
gle for the polar grid (1◦) and the sampling number ofv2

(360), are all in perfect conditions. The outlier ratio is deter-
mined by the input line segments and the angle for the polar
grid is constant for all the cases, thus in this section, we
will show how the confidence coefficient and the sampling
number ofv2 influence the performance of the proposed
method.

To test the effect of the confidence coefficient, we set
it as 0.9, 0.99, 0.999 and 0.9999, respectively. By setting
this, the numbers of iteration are 26, 52, 79 and 105, re-
spectively. Figure 4(a) shows the corresponding accuracies
of those different values of the confidence coefficient. We
can see that, with the increasing of the confidence coeffi-
cient, the accuracy of the vanishing point estimation result
is improved step by step. The result of the confidence co-
efficient as 0.999 (accuracy: 0.992) is approximate to that
of the confidence coefficient as 0.9999 (accuracy: 0.993),
but the number of iterations of the latter is 26 more than
that of the former, which means 9360 more hypotheses in
total. However, due to the applied polar grid, the difference
of time consumptions between them are small enough to be
ignored, thus we still recommend to set the confidence co-
efficient as 0.9999.

To test the effect of the sampling number ofv2, we set
it as 60, 120, 180 and 360, respectively, which means the
accuracies of thev2 are6◦, 3◦, 2◦ and1◦, respectively. Fig-
ure 4(b) shows the accuracies of those different values of
the sampling number. We can see that, with the increasing
of the sampling number, the accuracy also increases despite
of the fact that the increment is relatively small. An expla-
nation to this phenomenon is that the distribution of inter-
section points on the polar grid is sparse, thus even a small
sampling number as 60 can achieve the close performance
to that of a big sampling number as 360. Still, we recom-
mend a big sampling number as 360 for all the cases.

As a summary, both the confidence coefficient and the
sampling number ofv2 have effect on the final vanishing
point estimation accuracy, but the difference is small and
the worst accuracy value (0.976) is still very good. Since
the time consumption of the hypotheses validation is small,
we recommend to set the confidence coefficient as 0.9999

https://github.com/xiaohulugo/VanishingPointDetection
http://www.elderlab.yorku.ca/YorkUrbanDB/
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Figure 4. Vanishing point estimation accuracies of difference val-
ues of the confidence coefficient (a) and the sampling number (b).
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Figure 5. Vanishing point estimation accuracies of the DualSpace
based method [9], the 3-line MSS optimal method [11], the J-
Linakge based method [14] and ours in the YUD, YUD2 and
YUD1 datasets.

and the sampling number as 360 for all the cases.

3.3. Comparison with Start-of-the-Art Methods

Three start-of-the-art vanishing point estimation meth-
ods were tested for comparison with our proposed method,
including the Dual Space based method [9]3, the 3-line
MSS optimal method [11]4 and the non-iterative J-Linkage
based method [14]5. The original result of the J-Linkage
based method tends to miss some line segments, one reason
to this may be that the number of line segments in the YUD
is not sufficient enough for the J-Linkage. Thus we reas-
signed the line segments to the vanishing points estimated
from the original classification result and used the reclas-
sification result as the final output of the J-Linkage based
method. We denote these three methods and the proposed
algorithm as DualSpace, 3-line, J-Linakge and ours, respec-

3http://dev.ipol.im/ ˜ jlezama/vanishing_points/
4http://www-users.cs.umn.edu/ ˜ faraz/?p=research
5http://www-etud.iro.umontreal.ca/ ˜ tardifj/

tively.
Most images of the original YUD contain 3 vanishing

points, to test the performance of these methods on the im-
ages with 2 and 1 vanishing points(s), we built a 2 vanishing
points dataset (denoted as YUD2) and a 1 vanishing point
dataset (denoted as YUD1) based on the YUD dataset. The
YUD2 dataset is formed by the two vanishing points with
the most and second numbers of corresponding line seg-
ments. The YUD1 dataset is formed by the vanishing point
with the most number of corresponding line segments. Fig-
ure 5 shows the vanishing point estimation accuracies of
these four methods in the YUD, YUD2 and YUD1 datasets,
from which we can get the following observations. First,
in all the datasets, the proposed method achieves the best
performance among these four methods, especially in the
YUD2 and YUD1 datasets which contain 2 and 1 vanishing
point(s), respectively. Second, the DualSpace based method
and the J-Linakge based method are both useful on the im-
age with 2 or 1 vanishing point(s), but their accuracies are
much lower than that of our method. On the YUD1 dataset
with only one vanishing point, the accuracies of the Du-
alSpace based method and the J-Linakge based method are
0.798 and 0.813, respectively, while that of our method is
0.981. Third, the 3-line MSS optimal method failed in the
YUD1 dataset with an accuracy of 0.080, because the 3-line
MSS is based on the assumption that there are at least 2 van-
ishing points on the image. Fourth, the accuracies of the J-
Linakge based method are moderate in all the YUD, YUD2
and YUD1 datasets, this is for the reason that the J-Linakge
based method was designed to detect the line segment clus-
ters with the same pattern, thus the J-Linakge based method
can be applied in the cases of 3, 2, or 1 vanishing point(s).
However, due to the lack of the orthogonal constrain, the
J-Linkage based method can not achieve very high accura-
cies. Fifth, even in the original YUD dataset with 3 van-
ishing points, the proposed method still achieve the highest
accuracy 0.991. As a summary, the proposed method is ro-
bust on an image with 3, 2 or 1 vanishing point(s), and can
achieve a higher vanishing point estimation accuracy than
the start-of-the-art methods. Figure 6 is a demonstration
of the vanishing point estimation results of the proposed
method on two representative images of the YUD dataset,
from the left to the right are the original line segments, the
results of 3 vanishing points, 2 vanishing points and 1 van-
ishing point, respectively.

3.4. Robustness to Outliers

To validate the robustness of the proposed method to out-
liers, we tested it on the YUD dataset with different ratios
of outliers. For each image in the YUD dataset, we ran-
domly selected 10%, 20%, 30%, 40%, 50%, 60% and 70%
of its line segments as outliers by adding noises on the ori-
entation of these line segments. For a line segment, the

http://dev.ipol.im/~jlezama/vanishing_points/
http://www-users.cs.umn.edu/~faraz/?p=research
http://www-etud.iro.umontreal.ca/~tardifj/


#Lines: 82 #Lines: 82, (25,22,35) #Lines: 60, (25,35,0) #Lines: 35, (35,0,0)

#Lines: 95 #Lines: 95, (51,6,38) #Lines: 89, (51,38,0) #Lines: 51, (51,0,0)
Figure 6. Vanishing point estimation results of the proposed method on the YUD dataset with 3, 2, and 1 vanishing point(s). The triple
“( , , )” denotes the numbers of line segments corresponding to different vanishing points, respectively.

orientation noise was added by rotating it round its mid-
point with a random angle in [10◦, 20◦]. Then, those line
segments were considered as outliers since the angle devia-
tion between it and the corresponding vanishing point was
larger than 10◦. We tested the proposed method, the Du-
alSpace based method, the 3-line MSS optimal method and
the J-Linakge based method in these YUD dataset with dif-
ferent outliers ratios respectively. Figure 7 shows the van-
ishing point estimation accuracies of these four methods in
the YUD dataset with different outliers ratios, from which
we can draw the following conclusions. First, the accuracies
of all these methods drop with the increasing of outliers ra-
tio. Second, the proposed method can achieve the highest
accuracies among all these four methods. Third, the accu-
racy of our method is higher than 0.9 when the outliers ratio
is 40%, and is 0.827 even when the outliers ratio is 50%,
which demonstrates the robustness of the proposed method.
Fourth, our method can’t perform well when the outliers ra-
tio is larger than 50%.

3.5. Performance on Real Scene Images

The line segments of the YUD dataset contains no out-
liers, which is an ideal case. In practice, the vanishing
points are estimated based on the line segments obtained
by a certain line segment detector, which often contains
many outliers. To evaluate the robustness of the proposed
method on the real scene images, we tested it on the line
segments detected by LSD [17], and discarded the line seg-
ments shorter than 30 pixels. Figure 8 shows the line seg-
ments detected by LSD (the first and third columns), and the
line segment clusters estimated by our method (the second
and fourth columns). We can see in Figure 8 that the pro-
posed method performed very well in the real scene images,
the three orthogonal vanishing points were estimated and
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Figure 7. Vanishing point estimation accuracies of the DualSpace
based method [9], the 3-line MSS optimal method [11], the J-
Linakge based method [14] and ours in the YUD dataset with dif-
ferent outliers ratios.

the outliers were discarded well. What should be noticed is
that the time-consumption of the proposed method on these
images is around 40ms on average without any optimization
and parallel computation on a computer with Intel Core i5-
3550p CPU, which shows the ability of our method to be
applied on real-time and real-scene applications like indoor
navigation and so on.

4. Conclusion

This paper presents a very simple and efficient algorithm
to estimate 1, 2 or 3 orthogonal vanishing point(s) on a cali-
brated image in Manhattan world. To generate the vanishing
point hypotheses, we propose to use 2 lines to get the first
vanishing pointv1, then uniformly take sample of the sec-



Figure 8. Vanishing point estimation results of the proposed method in the YUD dataset with line segments detected by theLSD [17]. The
line segments detected by LSD are drawn in pink in the first andthird columns, the line segments corresponding to different vanishing
points are drawn in different colors and the outliers are marked in black in the second and fourth columns.

ond vanishing pointv2, and finally calculate the third van-
ishing pointv3 via the cross-product ofv1 andv2. To ob-
tain a global optimal solution to the vanishing point estima-
tion problem, we applied an exhaustive searching strategy
which validates every hypothesis to find out the best one. To
accelerate the time-consuming exhaustive searching proce-
dure, a polar gird is built, which converts this problem into
a lookup issue whose complexity isO(n). To demonstrate
the performance of the proposed method, we compared it
with three start-of-the-art methods in the YUD dataset and
it variants. Experimental results show that our method out-
performed the start-of-the-art methods, especially on the
images with 2 and 1 vanishing point(s). We also experi-
mented on the line segments detected by the LSD detector,

it turns out that our method can still achieve very good per-
formance.
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